Dmitri Z. Garbuzov

Dmitri Z. Garbuzov
Dmitri Z. Garbuzov
Born October 27, 1940
Sverdlovsk, Russia
Died August 20, 2006
Princeton, New Jersey
Nationality Russian
Institutions Ioffe Physico-Technical Institute (St. Petersburg, Russia); in latter years Princeton University (Princeton, NJ), Sarnoff Corporation (Princeton, NJ), and Princeton Lightwave, Inc. (Cranbury, NJ)
Known for Practical (Room temperature, high efficiency, and high power) diode lasers at a variety of wavelengths from visible to mid-infrared
Notable awards Lenin Prize (1972)
State Prize (1987)
Elected to the Russian Academy of Sciences (1991)
Humboldt Award (1992)

Dmitri Z. Garbuzov (1940, Sverdlovsk, Russia - August 2006, Princeton, New Jersey) was one of the pioneers and inventors of room temperature continuous-wave-operating diode lasers and high-power diode lasers.

Diode lasers were successfully invented, developed, and almost simultaneously demonstrated at the Ioffe Physico-Technical Institute in Leningrad, Russia by a team including Garbuzov and Zhores Alferov (winner of the 2000 Nobel Prize for Physics),[1] and by the competing team of I. Hayashi and M. Panish at Bell Telephone Laboratories in Murray Hill, New Jersey. Both teams attained this accomplishment in 1969. Garbuzov was also responsible for the development of practical high-power, high-efficiency, diode lasers at a variety of wavelength bands from visible to mid-infrared wavelengths.

Following perestroika, Garbuzov, who had served as an accomplished and respected scientist and manager within the Soviet scientific research system, established a research group in the West which employed multiple Russian émigré scientists and simultaneously contributed to three American for-profit enterprises.

Contents

Personal life

Dmitri Zalmanovitch Garbuzov was born in Sverdlovsk, Russia in 1940. His father, Zalman Garbuzov, was a prominent engineer. His mother was Natalia Polivoda. He married Galina Minina and they have two children, Alina and Dmitri.

Garbuzov succumbed to cancer, diagnosed at an advanced stage, in August 2006 at the age of 65 at his home in Princeton, New Jersey.

Early career

In 1962 Dmitri graduated from the Department of Physics of Leningrad State University. In 1964, Dmitri joined the group of Zhores Alferov at Ioffe Physical-Technical Institute of the Russian Academy of Sciences in Leningrad. At the time, Alferov's team was among the very few research groups in the world that studied heterojunctions in semiconductors. In 2000, Zhores Alferov and Herbert Kroemer were awarded the Nobel Prize for their pioneering work.

The achievement of the first 300ºK continuous wave diode laser was reported in Investigation of the influence of the AlGaAs-GaAs heterostructure parameters on the laser threshold current and the realization of the continuous emission at the room temperature [2]

Dmitri Garbuzov received his Ph.D. in 1968, and Doctor of Science degree in 1979. In the Russian system, the Doctor of Science is the second doctoral degree which is awarded to suitable candidates who can lead research.

Room temperature diode laser

Background

The 1969 demonstration of the first room-temperature diode laser that crowned years of scientific and technological research developments involving optical semiconductors. These accomplishments parallel and lag the microelectronics revolution beginning with the demonstration of the first transistor in 1948. The laser was invented by Charles Hard Townes and Arthur Leonard Schawlow, Gordon Gould and by Aleksandr Prokhorov,[3] but there was no practical laser "chip" which would make the laser the everyday item we use today.

Shortly after Townes and Schawlow, the possibility of lasing in a semiconductor device was recognized. The first major accomplishment in this context was the observation of nearly 100% internal efficiency in conversion of electron-hole pairs to photons in GaAs semiconductor devices by MIT Lincoln Laboratory, RCA Laboratories, and Texas Instruments, Inc. in 1962, followed by the demonstration of the first diode laser by General Electric and IBM shortly thereafter. The new devices operated only at cryogenic temperatures (typically that of liquid nitrogen, that is, at 77°K (–196°C). For practical use, it would be necessary to demonstrate diode laser action at room temperature.

Invention of room temperature diode laser

The invention of the first room-temperature diode laser in the Soviet Union occurred during a climate of intense Cold War competition and secrecy, albeit with sporadic scientific contacts at international conferences and during specially arranged international visits, and the question of primacy of invention has been debated over many years. However, there is general consensus among scientists in the semiconductor laser field that the concept that led to the first room-temperature diode laser: the double-heterostructure laser, was invented in the Soviet Union in 1964 by Rudolf F. Kazarinov and Zhores Alferov and recorded in a Russian patent application filed that year. For that invention and several other seminal seminal contribution to the semiconductor lasers Rudolf F. Kazarinov won the 1998 Quantum Electronics Award of the IEEE Photonics Society (see below at References).

While the Nobel Prize committee was satisfied that the Russian team reached the accomplishment prior to Hayashi and Panish at Bell Labs, there continues to be discussion on this point among members of the scientific community, and the matter may never be resolved.

Today, as a result of the accomplishments of Garbuzov and other scientists in the field, diode lasers transformed the semiconductor laser into a functioning device, paving the way for many applications that we take for granted today such as CDs, DVDs, and fiberoptic communications. Other devices using this type of laser include spectroscopic sensing systems, laser printers, laser machine tools for automobile manufacture, and other applications.

Later years in Russia

In subsequent years, Garbuzov developed the highest power diode lasers at wavelengths from 0.8 to 2.7 µm, introducing a new and revolutionary laser design to accomplish this, and made many contributions to new laser devices and businesses that produced them.

In 1979, Garbuzov became head of the Semiconductor Luminescence and Injection Emitters Laboratory at the A.F. Ioffe Physical Technical Institute. Heterojunctions of quaternary solid solutions of InGaAsP/InP were investigated under his leadership. Lasers based on such structures are the basis of today's optical communications.

He led research on re-radiation effects in double heterojunctions. His group at the Ioffe Institute established almost 100% external efficiency of luminescence in GaAlAs heterostructures. This gave birth to another practical application — a new class of semiconductor alphanumeric displays. In 1987, Garbuzov and colleagues were awarded the State Prize for this achievement, the second highest civilian award in the former Soviet Union.

Aluminum-free diode heterostructure lasers became the next step in his scientific life. He suggested and developed lasers with wavelengths of 0.75-1.0 µm, including those of visible (red) wavelengths.

In 1991 Garbuzov became a corresponding member of the Russian Academy of Sciences.

Berlin

After the collapse of the Soviet Union, Garbuzov received the Humboldt Award for his work on Al-free diode lasers, and with it financial support for one year of work in Germany. He used the Award for an extended visit in 1992 to conduct research on InAlGaAs/InGaAs distributed feedback lasers at Dieter Bimberg]’s laboratory at the Technical University in Berlin.[4]

United States

Princeton University and Sarnoff Corporation

In 1994, following a year's visit with the group of Manijeh Razeghi at Northwestern University in Evanston, IL, he decided to join both Princeton University and Sarnoff Corporation (formerly RCA Laboratories), in Princeton, New Jersey. In 1997 he was joined by long-time collaborator Viktor B. Khalfin, a semiconductor physics theorist.

Garbuzov continued to advance the performance of semiconductor devices at both institutions and later became a Senior Member of Technical Staff at Sarnoff Corporation, where he remained until May 2000. At Sarnoff, Garbuzov worked on antimonide-based lasers demonstrating record wavelengths of 2.7 µm. At the same time, he made a significant impact in high power diode lasers and their heterostructures by introducing the "broadened waveguide," a concept which now serves as a basis for the entire industry producing high power lasers for industrial applications (U.S. Patent 5,818,860).

Princeton Lightwave

In 2000, Garbuzov became one of the founders of Princeton Lightwave Inc., where he was Vice President of Research, where he continued his work on high-power stripe lasers. Garbuzov's work led to the acquisition of a portion of PLI by the TRUMPF Group, a manufacturer of industrial laser metal-forming and manufacturing equipment.

Citations

  • H. Lee, P.K. York, R.J. Menna, R.U. Martinelli, D.Z. Garbuzov, S.Y. Narayan, and J.C. Connolly, Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers, Applied Physics Letters volume 66, issue 15, page 1942,(1995)
  • D.Z. Garbuzov et al."2.3-2.7 room temperature CW operation of InGaAsSb/AlGaAsSb broad waveguide SCH-QW diode lasers". IEEE Photon. Technology Letters v. 11 pp. 794–796, (1999).
  • G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, High-external-quantum-efficiency organic light-emitting devices, Optics Letters volume 22, page 396.
  • V. Bulović, V.B. Khalfin, G. Gu, P.E. Burrows, D.Z. Garbuzov, S.R. Forrest Weak microcavity effects in organic light-emitting devices, Physical Review B volume 58, page 3730.
  • L.J. Mawst, A. Bhattacharya, J. Lopez, D. Botez, D. Z. Garbuzov, L. DiMarco, J. C. Connolly, M. Jansen, F. Fang, and R.F. Nabiev,.8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers, Applied Physics Letters volume 69, page 1532.

U.S. patents

Patent Number Title
7,084,444 Method and apparatus for improving efficiency in opto-electronic radiation source devices
6,650,671 Semiconductor diode lasers with improved beam divergence
6,650,045 Displays having mesa pixel configuration
6,600,764 High power single mode semiconductor laser
6,556,611 Wide stripe distributed Bragg reflector lasers with improved angular and spectral characteristics
6,459,715 Master-oscillator grating coupled power amplifier with angled amplifier section
6,404,125 Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes
6,366,018 Apparatus for performing wavelength-conversion using phosphors with light emitting diodes
6,330,263 Laser diode having separated, highly-strained quantum wells
6,301,279 Semiconductor diode lasers with thermal sensor control of the active region temperature
6,133,520 Heterojunction thermophotovoltaic cell
6,125,226 Light emitting devices having high brightness
6,091,195 Displays having mesa pixel configuration
6,046,543 High reliability, high efficiency, integratable organic light emitting devices and methods of producing same
6,005,252 Method and apparatus for measuring film spectral properties
5,986,268 Organic luminescent coating for light detectors
5,874,803 Light emitting device with stack of OLEDS and phosphor downconverter
5,834,893 High efficiency organic light emitting devices with light directing structures
5,818,860 High power semiconductor laser diode

Awards and prizes

The Nobel Prize Committee awarded the 2000 Nobel Prize for Physics to Zhores Alferov as the leader of the Soviet team to discover and invent the room temperature diode laser.[5]

In 1972, Dr. Garbuzov, together with Dr. Alferov and other colleagues, was awarded the Lenin Prize, the highest civilian award in the Soviet Union of that era. The Lenin Prize's citation was "Fundamental Research of Heterojunctions in Semiconductors and Development of Novel Devices on their Bases."[6]

Garbuzov received, with his team, the 1987 State Prize, the second highest prize awarded within the Soviet Union.

In 1991 Garbuzov was honored by becoming a member of the Russian Academy of Sciences.

Garbuzov received the Humboldt Prize in 1992.

See also

For researchers in optoelectronics R & D at Sarnoff Corporation see Millstone River Photonickers.

References

  1. ^ www.ioffe.ru
  2. ^ Investigation of the influence of the AlGaAs-GaAs heterostructure parameters on the laser threshold current and the realization of the continuous emission at the room temperature, Zh. I. Alferov, V.M. Andreev, D.Z. Garbuzov, Yu. V. Zhilyaev, E.P. Morozov, E.L. Portnoi, and V.G. Trofim, Sov. Phys. Semiconductors 4,) [Translated from Fiz. Tekh. Poluprovodn. 4,)].
  3. ^ Aleksandr Prokhorov at nobelprize.org
  4. ^ sol.physik.tu-berlin.de
  5. ^ Alferov's account at nobelprize.org
  6. ^ Owing to the strict cultural separation prevailing during the Cold War era, documentation of the Lenin Prize is still not readily available in the West today but is documented in Russian newspaper articles of the period as well as through primary sources.

http://photonicssociety.org/award-winners/Quantum%20Electronics%20Award

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Laser diode — Top: a packaged laser diode shown with a penny for scale. Bottom: the laser diode chip is removed from the above package and placed on the eye of a needle for scale …   Wikipedia

  • Fotónica — Saltar a navegación, búsqueda Refracción de ondas de fotones ((luz) mediante un prisma La fotónica es la ciencia de la generación, control y detección de fotones, en particular en el espectro visible e infrarrojo cercano, per …   Wikipedia Español

  • Russia at the 2004 Summer Olympics — Infobox Olympics Russia games=2004 Summer competitors= sports= flagbearer=Alexander Popov gold=27 silver=27 bronze=38 total=92 rank=3Russia at the 2004 Summer Olympics was represented by the Russian Olympic Committee (abbreviated ROC). The team… …   Wikipedia

  • Soviet Union at the 1952 Summer Olympics — Infobox Olympics Soviet Union games=1952 Summer competitors= 295 (255 men, 40 women) [cite journal |url=http://www.la84foundation.org/OlympicInformationCenter/OlympicReview/1974/ore84/ore84k.pdf |title=The USSR and Olympism |journal=Olympic… …   Wikipedia

  • URSS aux Jeux olympiques d'été de 1952 — Union soviétique aux Jeux olympiques d été de 1952 Union soviétique aux Jeux olympiques d hiver de 1956 …   Wikipédia en Français

  • Union soviétique aux Jeux olympiques d'été de 1952 — Union soviétique aux Jeux olympiques Union soviétique aux Jeux olympiques d hiver de 1956 …   Wikipédia en Français

  • Union soviétique aux jeux Olympiques d'été de 1952 — Union soviétique aux Jeux olympiques d hiver de 1956 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”