Language of mathematics


Language of mathematics

The language of mathematics is the system used by mathematicians to communicate mathematical ideas among themselves. This language consists of a substrate of some natural language (for example English) using technical terms and grammatical conventions that are peculiar to mathematical discourse (see Mathematical jargon), supplemented by a highly specialized symbolic notation for mathematical formulas.

Like natural languages in general, discourse using the language of mathematics can employ a scala of registers. Research articles in academic journals use a more formal tone than oral exchanges over a scribbled-upon napkin in the university cafeteria.

Contents

What is a language?

Here are some definitions of language:

  • a systematic means of communicating by the use of sounds or conventional symbols WordNet
  • a system of words used in a particular discipline WordNet
  • the code we all use to express ourselves and communicate to others Speech & Language Therapy Glossary of Terms
  • a set (finite or infinite) of sentences, each finite in length and constructed out of a finite set of elements Noam Chomsky

These definitions describe language in terms of the following components:

  • A vocabulary of symbols or words
  • A grammar consisting of rules of how these symbols may be used
  • A community of people who use and understand these symbols
  • A range of meanings that can be communicated with these symbols

Each of these components is also found in the language of mathematics.

The vocabulary of mathematics

Mathematical notation has assimilated symbols from many different alphabets and typefaces. It also includes symbols that are specific to mathematics, such as

\forall \ \exists \ \nabla \ \wedge \ \infty.

Mathematical notation is central to the power of modern mathematics. Though the algebra of Al-Khwārizmī did not use such symbols, it solved equations using many more rules than are used today with symbolic notation, and had great difficulty working with multiple variables (which using symbolic notation can simply be called x,y,z, etc.). Sometimes formulas cannot be understood without a written or spoken explanation, but often they are sufficient by themselves, and sometimes they are difficult to read aloud or information is lost in the translation to words, as when several parenthetical factors are involved or when a complex structure like a matrix is manipulated.

Like any other profession, mathematics also has its own brand of technical terminology. In some cases, a word in general usage has a different and specific meaning within mathematics—examples are group, ring, field, category, term, and factor. For more examples, see Category:Mathematical terminology.

In other cases, specialist terms have been created which do not exist outside of mathematics—examples are tensor, fractal, functor. Mathematical statements have their own moderately complex taxonomy, being divided into axioms, conjectures, theorems, lemmas and corollaries. And there are stock phrases in mathematics, used with specific meanings, such as "if and only if", "necessary and sufficient" and "without loss of generality". Such phrases are known as mathematical jargon.

When mathematicians communicate with each other informally, they use phrases that help to convey ideas. Examples of some of the more idiomatic phrases are "kill this term", "vanish this interval" and "grow this variable".

The vocabulary of mathematics also has visual elements. Diagrams are used informally on blackboards, as well as more formally in published work. When used appropriately, diagrams display schematic information more easily. Diagrams also help visually and aid intuitive calculations. Sometimes, as in a visual proof, a diagram even serves as complete justification for a proposition. A system of diagram conventions may evolve into a mathematical notation – for example, the Penrose graphical notation for tensor products.

The grammar of mathematics

The grammar used for mathematical discourse is essentially the grammar of the natural language used as substrate, but with several mathematics-specific peculiarities.

Most notably, the mathematical notation used for formulas has its own grammar, not dependent on a specific natural language, but shared internationally by mathematicians regardless of their mother tongues. This includes the conventions that the formulas are written predominantly left to right, also when the writing system of the substrate language is right-to-left, and that the Latin alphabet is commonly used for simple variables and parameters. A formula such as

\sin x + a\cos 2 x \ge 0\,

is understood by Chinese and Israeli mathematicians alike.

Such mathematical formulas can be a part of speech in a natural-language phrase, or even assume the role of a full-fludged sentence. For example, the formula above, an equation, can be considered a sentence or sentential phrase in which the greater than or equal to symbol has the role of a verb. In careful speech, this can be made clear by pronouncing "≥" as "is greater than or equal to", but in an informal context mathematicians may shorten this to "greater or equal" and yet handle this grammatically like a verb.

Mathematical formulas can be vocalized (spoken aloud). The vocalization system for formulas has to be learned, and is dependent on the underlying natural language. For example, when using English, the expression "ƒ (x)" is conventionally pronounced "eff of eks", where the insertion of the preposition "of" is not suggested by the notation per se. The expression "\tfrac{dy}{dx}", on the other hand, is vocalized like "dee-why-dee-eks", with complete omission of the fraction bar, in other contexts often pronounced "over".

Characteristic for mathematical discourse – both formal and informal – is the use of the inclusive first person plural "we" to mean: "the audience (or reader) together with the speaker (or author)".

The language community of mathematics

Mathematics is used by mathematicians, who form a global community composed of speakers of many languages. It is also used by students of mathematics. As mathematics is a part of primary education in almost all countries, almost all educated people have some exposure to pure mathematics. It is interesting to note that there are very few cultural dependencies or barriers in modern mathematics. There are international mathematics competitions, such as the International Mathematical Olympiad, and international co-operation between professional mathematicians is commonplace.

The meanings of mathematics

Mathematics is used to communicate information about a wide range of different subjects. Here are three broad categories:

  • Mathematics describes abstract structures: on the other hand, there are areas of pure mathematics which deal with abstract structures, which have no known physical counterparts at all. However, it is difficult to give any categorical examples here, as even the most abstract structures can be co-opted as models in some branch of physics (see Calabi-Yau spaces and string theory).
  • Mathematics describes mathematics: mathematics can be used reflexively to describe itself—this is an area of mathematics called metamathematics.

Mathematics can communicate a range of meanings that is as wide as (although different from) that of a natural language. As German mathematician R.L.E. Schwarzenberger says:

My own attitude, which I share with many of my colleagues, is simply that mathematics is a language. Like English, or Latin, or Chinese, there are certain concepts for which mathematics is particularly well suited: it would be as foolish to attempt to write a love poem in the language of mathematics as to prove the Fundamental Theorem of Algebra using the English language. - Schwarzenberger (2000)

Alternative views

Some definitions of language, such as early versions of Charles Hockett's "design features" definition, emphasize the spoken nature of language. Mathematics would not qualify as a language under these definitions, as it is primarily a written form of communication (to see why, try reading Maxwell's equations out loud). However, these definitions would also disqualify sign languages, which are now recognized as languages in their own right, independent of spoken language.

Other linguists believe no valid comparison can be made between mathematics and language, because they are simply too different:

Mathematics would appear to be both more and less than a language for while being limited in its linguistic capabilities it also seems to involve a form of thinking that has something in common with art and music. - Ford & Peat (1988)

See also

References

  • R. L. E. Schwarzenberger (2000), The Language of Geometry, published in A Mathematical Spectrum Miscellany, Applied Probability Trust.
  • Alan Ford & F. David Peat (1988), The Role of Language in Science, Foundations of Physics Vol 18.

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Mathematics and art — have a long historical relationship. The ancient Egyptians and ancient Greeks knew about the golden ratio, regarded as an aesthetically pleasing ratio, and incorporated it into the design of monuments including the Great Pyramid,[1] the Parthenon …   Wikipedia

  • Language education — Language Teaching redirects here. For the journal, see Language Teaching (journal). Linguistics …   Wikipedia

  • mathematics, foundations of — Scientific inquiry into the nature of mathematical theories and the scope of mathematical methods. It began with Euclid s Elements as an inquiry into the logical and philosophical basis of mathematics in essence, whether the axioms of any system… …   Universalium

  • Mathematics as a language — The central question involved in discussing mathematics as a language can be stated as follows: : What do we mean when we talk about the language of mathematics? To what extent does mathematics meet generally accepted criteria of being a… …   Wikipedia

  • Mathematics education — A mathematics lecture at Aalto University School of Science and Technology. Educational Research …   Wikipedia

  • mathematics, philosophy of — Branch of philosophy concerned with the epistemology and ontology of mathematics. Early in the 20th century, three main schools of thought called logicism, formalism, and intuitionism arose to account for and resolve the crisis in the foundations …   Universalium

  • language — /lang gwij/, n. 1. a body of words and the systems for their use common to a people who are of the same community or nation, the same geographical area, or the same cultural tradition: the two languages of Belgium; a Bantu language; the French… …   Universalium

  • language — lan|guage [ læŋgwıdʒ ] noun *** 1. ) uncount the method of human communication using spoken or written words: Linguistics is the study of language and how people use it. language skills (=the ability to use a language, especially a foreign… …   Usage of the words and phrases in modern English

  • language */*/*/ — UK [ˈlæŋɡwɪdʒ] / US noun Word forms language : singular language plural languages Metaphor: Language and words are like food, and the emotions that words express are like flavours. It took me a long time to digest the news. ♦ The technical name… …   English dictionary

  • language — lan•guage [[t]ˈlæŋ gwɪdʒ[/t]] n. 1) ling. a body of words and the systems for their use common to a people of the same community or nation, the same geographical area, or the same cultural tradition: the French language[/ex] 2) ling. a)… …   From formal English to slang