Bi-directional text

Bi-directional text is text containing text in both text directionalities, both right-to-left (RTL) and left-to-right (LTR). It generally involves text containing different types of alphabets, but may also refer to boustrophedon, which is changing text directionality in each row.

Some writing systems of the world, notably the Arabic and Hebrew scripts, are written in a form known as right-to-left (RTL), in which writing begins at the right-hand side of a page and concludes at the left-hand side. This is different from the left-to-right (LTR) direction used by most languages in the world. When LTR text is mixed with RTL in the same paragraph, each type of text is written in its own direction, which is known as bi-directional text. This can get rather complex when multiple levels of quotation are used.

Many computer programs fail to display bi-directional text correctly. For example, the Hebrew name Sarah (שרה) is spelled shin (ש) resh (ר) heh (ה) from right to left. Some Web browsers may display the Hebrew text in this article in the opposite direction.


Unicode support

Bidirectional script support is the capability of a computer system to correctly display bi-directional text. The term is often shortened to the jargon term BiDi or bidi.

Early computer installations were designed only to support a single writing system, typically for left-to-right scripts based on the Latin alphabet only. Adding new character sets and character encodings enabled a number of other left-to-right scripts to be supported, but did not easily support right-to-left scripts such as Arabic or Hebrew, and mixing the two was not practical. Right-to-left scripts were introduced through encodings like ISO/IEC 8859-6 and ISO/IEC 8859-6, storing the letters (usually) in writing and reading order. It is possible to simply flip the left-to-right display order to a right-to-left display order, but doing this sacrifices the ability to correctly display left-to-right scripts. With bidirectional script support, it is possible to mix scripts from different scripts on the same page, regardless of writing direction.

In particular, the Unicode standard provides foundations for complete BiDi support, with detailed rules as to how mixtures of left-to-right and right-to-left scripts are to be encoded and displayed.

In Unicode encoding, all non-punctuation characters are stored in writing order. This means that the writing direction of characters is stored within the characters. If this is the case, the character is called "strong". Punctuation characters however, can appear in both LTR and RTL scripts. They are called "weak" characters because they do not contain any directional information. So it is up to the software to decide in which direction these "weak" characters will be placed. Sometimes (in mixed-directions text) this leads to display errors, caused by the BiDi-algorithm that runs through the text and identifies LTR and RTL strong characters and assigns a direction to weak characters, according to the algorithm's rules.

In the algorithm, each sequence of concatenated strong characters is called a "run". A weak character that is located between two strong characters with the same orientation will inherit their orientation. A weak character that is located between two strong characters with a different writing direction, will inherit the main context's writing direction (in an LTR document the character will become LTR, in an RTL document, it will become RTL). If a "weak" character is followed by another "weak" character, the algorithm will look at the first neighbouring "strong" character. Sometimes this leads to unintentional display errors. These errors are corrected or prevented with "pseudo-strong" characters. Such Unicode control characters are called marks. The mark (U+200E left-to-right mark (HTML: ‎ ‎ LRM) or U+200F right-to-left mark (HTML: ‏ ‏ RLM)) is to be inserted into a location to make an enclosed weak character inherit its writing direction.

For example, to correctly display the U+2122 trade mark sign for an English name brand (LTR) in an Arabic (RTL) passage, an LRM mark is inserted after the trademark symbol if the symbol is not followed by LTR text. If the LRM mark is not added, the weak character will be neighbored by a strong LTR character and a strong RTL character. Hence, in an RTL context, it will be considered to be RTL, and displayed in an incorrect order.

Possible BiDi-types of a character, to be used by the BiDi algorithm, are:

Scripts using bi-directional text

There are very few scripts that can be written in either direction.

Writing a boustrophedon requires every second line to use mirrored glyphs.

Egyptian hieroglyphs can be written bi-directional too, where the signs had a distinct "head" that faced the beginning of a line and "tail" that faced the end.

Chinese characters can also be written in either direction as well as vertically (top to bottom then right to left), especially in signs (such as plaques), but the orientation of the individual characters is never changed. This can often be seen on tour buses in China, where the company name customarily runs from the front of the vehicle to its rear - that is, from right to left on the right side of the bus, and from left to right on the left side of the bus.

Another variety of writing style, called boustrophedon, was used in some ancient Greek inscriptions, Tuareg, and Hungarian runes. This method of writing alternates direction, and usually reverses the individual characters, on each successive line.

See also


External links

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • mined (text editor) — MinEd Mined editing Unicode text Developer(s) Thomas Wolff Stable release 2011.17 / June 2011 …   Wikipedia

  • Complex text layout — The Devanagari ddhrya ligature of JanaSanskritSans, should be invoked by the layout engine to render the sequence of seven Unicode characters द + ् + ध + ् + र + ् + य = द्ध्र्य …   Wikipedia

  • Mined (text editor) — Infobox Software name = Mined caption = Mined editing Unicode text developer = [ Thomas Wolff] latest release version = 2000.14 latest release date = July 2007 operating system = OS independent genre = Text editor license =… …   Wikipedia

  • Texte bi-directionnel — Unicode Jeux de caractères UCS (ISO/CEI 10646) ISO 646, ASCII ISO 8859 1 WGL4 UniHan Équivalences normalisées NFC (précomposée) NFD (décomposée) NFKC (compatibilité) NFKD (compatibilité) Propriétés et algorithmes ISO 15924 …   Wikipédia en Français

  • Power dividers and directional couplers — A 10 dB 1.7–2.2 GHz directional coupler. From left to right: input, coupled, isolated (terminated with a load), and transmitted port …   Wikipedia

  • Comparison of text editors — This article provides basic comparisons for common text editors. More feature details for text editors are available from the Category of text editor features and from the individual products articles. This article may not be up to date or… …   Wikipedia

  • Mapping of Unicode characters — Unicode’s Universal Character Set has a potential capacity to support over 1 million characters. Each UCS character is mapped to a code point which is an integer between 0 and 1,114,111 used to represent each character within the internal logic… …   Wikipedia

  • Unicode character property — Unicode assigns character properties to each code point.[1] These properties can be used to handle characters (code points) in processes, like in line breaking, script direction right to left or applying controls. Slightly inconsequently, some… …   Wikipedia

  • Cursor (computers) — A blinking text cursor, stopped in the middle of typing the word Wikipedia. In computing, a cursor is an indicator used to show the position on a computer monitor or other display device that will respond to input from a text input or pointing… …   Wikipedia

  • Writing system — Predominant scripts at the national level, with selected regional and minority scripts. Alphabet Latin Cyrillic Latin Greek …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”