In particle physics, a dilaton is a hypothetical particle. It also appears in Kaluza-Klein theory's compactifications of extra dimensions when the volume of the compactified dimensions vary.

It is a particle of a scalar field Φ; a scalar field that always comes with gravity. In standard general relativity, Newton's constant, or equivalently, the Planck mass is always constant. If we "promote" this constant to a dynamical field, what we would get is the dilaton.

So, in Kaluza-Klein theories, after dimensional reduction, the effective Planck mass varies as some power of the volume of compactified space. This is why volume can turn out as a dilaton in the lower dimensional effective theory.

Although string theory naturally incorporates Kaluza–Klein theory (which first introduced the dilaton), perturbative string theories, such as type I string theory, type II string theory and heterotic string theory, already contain the dilaton in the maximal number of 10 dimensions. However, on the other hand, M-theory in 11 dimensions does not include the dilaton in its spectrum unless it is compactified. In fact, the dilaton in type IIA string theory is actually the radion of M-theory compactified over a circle, while the dilaton in E8 × E8 string theory is the radion for the Hořava–Witten model. (For more on the M-theory origin of the dilaton, see [1].)

In string theory, there is also a dilaton in the worldsheet CFT. The exponential of its vacuum expectation value determines the coupling constant g, as ∫R = 2πχ for compact worldsheets by the Gauss-Bonnet theorem and the Euler characteristic χ = 2 − 2g, where g is the genus that counts the number of handles and thus the number of loops or string interactions described by a specific worldsheet.

g = \exp(\langle \phi \rangle)

Therefore the coupling constant is a dynamical variable in string theory, unlike the case of quantum field theory where it is constant. As long as supersymmetry is unbroken, such scalar fields can take arbitrary values (they are moduli). However, supersymmetry breaking usually creates a potential energy for the scalar fields and the scalar fields localize near a minimum whose position should in principle be calculable in string theory.

The dilaton acts like a Brans–Dicke scalar, with the effective Planck scale depending upon both the string scale and the dilaton field.

In supersymmetry, the superpartner of the dilaton is called the dilatino, and the dilaton combines with the axion to form a complex scalar field.

Dilaton action

The dilaton-gravity action is

\int d^Dx \sqrt{-g} \left[ \frac{1}{2\kappa} \left( \Phi R - \omega\left[ \Phi \right]\frac{g^{\mu\nu}\partial_\mu \Phi \partial_\nu \Phi}{\Phi} \right) - V[\Phi] \right].

This is more general than Brans–Dicke in that we have a dilaton potential.

See also


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Dilatón — Saltar a navegación, búsqueda Dilaton es una hipotética partícula que aparece en la teoría de las cuerdas. Es una partícula de un campo escalar φ, un campo escalar (a raíz de la ecuación de Klein Gordon) que siempre viene con la gravedad. Aunque… …   Wikipedia Español

  • Dilaton — En physique théorique, le dilaton désignait à l origine un champ scalaire théorique (comme le photon réfère à un champ électromagnétique) qui apparaît dans la théorie de Kaluza Klein comme le composé g55 du tenseur métrique où « 5 » est …   Wikipédia en Français

  • dilaton — noun a) A theoretical scalar field (analogous to the photon) b) A particle, associated with gravity, in string theory …   Wiktionary

  • Non-critical string theory — The non critical string theory describes the relativistic string without enforcing the critical dimension. Although this allows the construction of a string theory in 4 spacetime dimensions, such a theory usually does not describe a Lorentz… …   Wikipedia

  • Supergravity — In theoretical physics, supergravity (supergravity theory) is a field theory that combines the principles of supersymmetry and general relativity. Together, these imply that, in supergravity, the supersymmetry is a local symmetry (in contrast to… …   Wikipedia

  • String duality — is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles. Before the so called duality revolution there were… …   Wikipedia

  • List of particles — This is a list of the different types of particles, known and hypothesized. For a chronological listing of subatomic particles by discovery date, see Timeline of particle discoveries. This is a list of the different types of particles found or… …   Wikipedia

  • Gravitation quantique — Gravité quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Gravite quantique — Gravité quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Gravité Quantique — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.