 Musean hypernumber

Musean hypernumbers are an algebraic concept envisioned by Charles A. Musès (1919–2000) to form a complete, integrated, connected, and natural number system.^{[1]}^{[2]}^{[3]}^{[4]}^{[5]} Musès sketched certain fundamental types of hypernumbers and arranged them in ten "levels", each with its own associated arithmetic and geometry.
Mostly criticized for lack of mathematical rigor and unclear defining relations, Musean hypernumbers are often perceived as an unfounded mathematical speculation. This impression was not helped by Musès' outspoken confidence in applicability to fields far beyond what one might expect from a number system, including consciousness, religion, and metaphysics.
The term "Malgebra" was used by Musès for investigation into a subset of his hypernumber concept (the 16 dimensional conic sedenions and certain subalgebras thereof), which is at times confused with the Musean hypernumber level concept itself. The current article separates this wellunderstood "Malgebra" from the remaining controversial hypernumbers, and lists certain applications envisioned by the inventor.
Contents
"Malgebra" and "hypernumber levels"
Musès was convinced that the basic laws of arithmetic on the reals are in direct correspondence with a concept where numbers could be arranged in "levels", where fewer arithmetical laws would be applicable with increasing level number.^{[3]} However, this concept was not developed much further beyond the initial idea, and defining relations for most of these levels have not been constructed.
Higher dimensional numbers built on the first three levels were called "Malgebra"^{[6]}^{[7]} by Musès if they yielded a distributive multiplication, unit element, and multiplicative norm. It contains kinds of octonions and historical quaternions (except A. MacFarlane's hyperbolic quaternions) as subalgebras. A proof of completeness of Malgebra has not been provided.
Conic sedenions / "16 dimensional Malgebra"
The term "Malgebra" (after C. Musès^{[6]}) refers to number systems that are vector spaces over the reals, whose bases consist in roots of −1 or +1, and which possess a multiplicative modulus. While the idea of such numbers was far from new and contains many known isomorphic number systems (like e.g. splitcomplex numbers or tessarines), certain results from 16 dimensional (conic) sedenions were a novelty. Musès demonstrated the existence of a logarithm and real powers in number systems built to nonreal roots of +1.
Multiplication table
The conic sedenions^{[8]}^{[9]} form an algebra with a noncommutative, nonassociative, but alternative multiplication and a multiplicative modulus. It consists of one real axis (to basis 1), eight imaginary axes (to bases i_{n} with ), and seven counterimaginary^{[10]} axes (to bases ε with ).
The multiplication table is:
Similar to unity (1), the imaginary basis i_{0} is always commutative and associative under multiplication. Musès at times used the symbol ε_{0}: = 1 to highlight this similarity.^{[6]} In fact, conic sedenions are isomorphic to complex octonions, i.e. octonions with complex number coefficients. By examining ε_{n} as bases to real number coefficients, however, Musès was able to show certain algebraic relations, including power and logarithm of ε_{n}.
Select findings
Musès showed that a countercomplex basis ε_{n} () not only has an exponential function^{[11]}
(α real) but also possesses real powers:^{[8]}^{[12]}
This is referred to as "power orbit" of ε_{n} by Musès. Also, a logarithm
is possible in this arithmetic.^{[8]} Their multiplicative modulus  z  is^{[9]}
List of number types^{[8]} and their isomorphisms
Circular quaternions and octonions
Circular quaternions and octonions from the Musean hypernumbers are identical to quaternions and octonions from Cayley–Dickson construction. They are built on imaginary bases i_{n} only.
Hyperbolic quaternions
Hyperbolic quaternions after Musès, to bases {1,ε_{1},ε_{2},i_{3}} are isomorphic to coquaternions (splitquaternions). They are different from Alexander Macfarlane's hyperbolic quaternions (first mention in 1891), which are not associative.
Conic quaternions
Conic quaternions are built on bases {1,i,ε,i_{0}} and form a commutative, associative, and distributive arithmetic. They contain nontrivial idempotents and zero divisors, but no nilpotents. Conic quaternions are isomorphic to tessarines, and also to bicomplex numbers (from the multicomplex numbers).
In contrast, circular and hyperbolic quaternions are not commutative, hyperbolic quaternions also contain nilpotents.
Hyperbolic octonions
Hyperbolic octonions are isomorphic to splitoctonion algebra. They consist of one real, three imaginary (), and four counterimaginary (ε) bases, e.g. {1,i_{1},i_{2},i_{3},ε_{4},ε_{5},ε_{6},ε_{7}}.
Conic octonions
Conic octonions to bases form an associative, noncommutative octonionic number system. They are isomorphic to biquaternions.
See also
 Biquaternion
 Hyperbolic quaternion (per A. MacFarlane)
 Hypercomplex number
 Nilpotents
 Octonion
 Quaternion
 Sedenion
 Splitcomplex number
 Splitoctonions
 Splitquaternion / Coquaternion
 Tessarines
 Zero divisor
External links
 Mention in zerodivisor analysis by R. de Marrais on arXiv.org
 Zerodivisor algebras on Tony Smith's personal home page (as of 12 Jan 2007)
The hypernumber "level" concept
In^{[3]} Musès paired certain fundamental laws of arithmetic with suggested number levels, where fewer of these laws would be applicable with increasing level number. Musès envisioned "... sensitivity to operational distinctions on the part of hypernumbers". In the absence of rigorous mathematical treatment, however, Musès' hypernumber level concept has only been adapted for metaphysical or religious ideas.^{[13]}^{[14]}^{[15]}
Providing defining relations for hypernumbers remains a fringe interest today,^{[16]} though it could benefit description of physical law that is based on the lower, wellunderstood levels.^{[17]}^{[18]}
The following lists an overview of the levels as envisioned by Musès.
Real, complex, and epsilon numbers
The first two levels in hypernumber arithmetic correspond to real and imaginary number arithmetic. The ε basis after Musès is identical to j from the splitcomplex numbers, and is a nonreal root of + 1. Epsilon numbers are assigned the 3rd level in the hypernumbers program.
w arithmetic
Beginning with w arithmetic,^{[1]}^{[4]}^{[12]} Musès envisioned hypernumber types that are increasingly unfamiliar and speculative. While providing certain rules on how to use these numbers, many open questions remain to date. w numbers are assigned the 4th level in the hypernumbers program.
In the twodimensional (real, w) plane, the power orbit (with real) is periodic with w^{0} = w^{6} = 1 and the following integral powers:
They offer a multiplicative modulus:
If a and b are real number coefficients, the arithmetic <(1,w), +, *> is a field (in fact the complex numbers with basis 1 and a primitive sixth root of unity rather than the usual fourth). However, the dual base number to (w) is (w), which is different from the conjugate of (w), which is 1(w). This is in contrast to e.g. the imaginary base , for which both dual and conjugate are the same (i). The resulting (w) arithmetic is therefore distinct from (w) arithmetic, while coexisting on the same number plane.
p and q numbers
Socalled p and q numbers^{[4]} are assigned the 5th level in the hypernumbers program, and form a nearly dual system. Each being nilpotent (p^{2} = q^{2} = 0), the arithmetic is envisioned to offer a multiplicative modulus, an argument, and a polar form.
The integral powers are:
In the {p, q} plane, both and (with real) lie on a twoleaved rose, described through with
Note on (−p), p^{ −1}, 1/p
From:^{[4]}
"...Note that −p is generated via w, thus: . It must be remembered that because p is nilpotent (), its zeroth power cannot be 1; in fact . Hence also , and since , we see that is panpotent, i.e. a root of infinity. Compare , which are a pair of divisors of infinity."
m numbers
The 6th level in the Musean hypernumbers is governed by cassinoids or Cassinian ovals,^{[4]} which geometrically describe their multiplication.
In the {real, m} plane, they offer the following relations:
It is speculated that a number system like this would use coefficients such as in the expression , that are not actually real numbers. Instead, one would need to look at +1, 1, +m, and m as units, and the coefficients as absolute numbers which are distinct from real numbers and are never negative.
The Cassinian ovals are described by:
The remaining levels
In the 7th level, Musès pictured a number Ω where Ω^{n} = Ω for any finite n, , but would be a number of the form a + bΩ (with a, b real).^{[4]}
The 8th level, υ is envisioned as unifying concept to allow to transition between all the lower hypernumber types.^{[5]}
The 9th level, σ is envisioned as the creator of axes, and has somewhat the characteristic of an operator (rather than a number). The product συ is proposed to be the unit step function.^{[5]}
The 10th level consists of 0 and antinumbers. Antinumbers are envisioned to be numbers beyond positive and negative infinity. With use of υ one would be able to span entire spaces consisting of axes of zeros, and connect numbers beyond positive and negative infinity.^{[5]}
Visions of applicability
The range of applications envisioned by Musès of his hypernumber concept is grandiose: A full and complete understanding of all laws of physics (in particular quantum mechanics^{[6]}^{[19]}), a description of consciousness in terms of physical formulations,^{[1]}^{[4]}^{[5]} spiritual growth, religious enlightenment, the solution of wellknown mathematical problems (including the Riemann hypothesis), and the exploration of parapsychological phenomena (e.g.^{[20]}). But none of his visions has been realized. Many of Musès' own writings combine mathematical content with one or more of these speculative projects,^{[21]}. The secondary literature on Musès devotes itself more to his speculative thought than to his mathematics.
References
 ^ ^{a} ^{b} ^{c} Musès, Charles A. (1972). "Hypernumbers and their Spaces: a Summary of New Findings". J. Study. Consciousness 5: 251–256.
 ^ Musès, Charles A. (1977). "Explorations in mathematics". Impact of science on society 27: 67–85.
 ^ ^{a} ^{b} ^{c} Musès, Charles A. (1978). "Hypernumbers—II. further concepts and computational applications". Appl. Math. Comput. 4: 45–66. doi:10.1016/00963003(78)900267.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} Musès, Charles A. (1979). "Computing in the biosciences with hypernumbers: a survey". Intl. J. BioMed. Comput. 10 (6): 519–525. doi:10.1016/00207101(79)900321.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} Musès, Charles A. (1983). "Hypernumbers and time operators". Appl. Math. Comput. 12 (2–3): 139–167. doi:10.1016/00963003(83)900048.
 ^ ^{a} ^{b} ^{c} ^{d} Musès, Charles A. (1980). "Hypernumbers and quantum field theory with a summary of physically applicable hypernumber arithmetics and their geometries". Applied Mathematics and Computing 6: 63–94. doi:10.1016/00963003(80)900168.
 ^ Musès, Charles A. (1980). "Erratum to “Hypernumbers and quantum field theory”". Applied Mathematics and Computing 6: 3694.
 ^ ^{a} ^{b} ^{c} ^{d} Carmody, Kevin (1988). "Circular and hyperbolic quaternions, octonions, and sedenions". Appl. Math. Comput. 28: 47–72. doi:10.1016/00963003(88)901336.
 ^ ^{a} ^{b} Carmody, Kevin (1997). "Circular and hyperbolic quaternions, octonions, and sedenions— further results". Appl. Math. Comput. 84: 27–48. doi:10.1016/S00963003(96)000513.
 ^ The terms "counterimaginary" and "countercomplex" used by Musès are synonymous to the more common term splitcomplex
 ^ Musès, Charles A. (1977). "Applied hypernumbers: computational concepts". Appl. Math. Comput. 3 (3): 211–226. doi:10.1016/00963003(77)900029.
 ^ ^{a} ^{b} Musès, Charles A. (1994). "Hypernumbers applied, or how they interface with the physical world". Appl. Math. Comput. 60: 25–36. doi:10.1016/00963003(94)902038.
 ^ Musaios (a pseudonym of Musès'), "The Lion Path", House of Horus (1990)
 ^ House of Horus web site
 ^ Private Lion Path web site
 ^ "Hypercomplex" number discussion group on Yahoo (R)
 ^ Köplinger, Jens (2006). "Hypernumbers and relativity". Appl. Math. Comput. 188: 954. doi:10.1016/j.amc.2006.10.051.
 ^ Köplinger, Jens (2006). "Gravity and electromagnetism on conic sedenions". Appl. Math. Comput. 188: 954. doi:10.1016/j.amc.2006.10.050.
 ^ Musès, Charles A. (1984). "Some current dilemmas in applied physical mathematics with some solutions". Appl. Math. Comput. 14 (2): 207–211. doi:10.1016/00963003(84)900389.
 ^ Charles Musès  "Time and destiny", Thinking Allowed Productions (#S460) online)
 ^ "The nature of hypernumbers can reveal the projection process ... (and) on the source of the hologram world or ordinary bodily experience ... to be able to go between the image world and the source world at will (time travel)." (from C. Musès, A. M. Young: "Consciousness and reality: the human pivot point", Outerbridge & Lazard, New York, 1972)
Number systems Countable sets Real numbers and
their extensionsOther number systems Categories: Hypercomplex numbers
 Nonassociative algebra
Wikimedia Foundation. 2010.
Look at other dictionaries:
Hypernumber — may refer to:*Hypercomplex numbers, mathematical objects that extend or go beyond complex number arithmetic *Musean hypernumbers, a number concept envisioned by Charles Musès … Wikipedia
Hypercomplex number — The term hypercomplex number has been used in mathematics for the elements of algebras that extend or go beyond complex number arithmetic.Hypercomplex numbers have had a long lineage of devotees including Hermann Hankel, Georg Frobenius, Eduard… … Wikipedia
Sedenion — In abstract algebra, sedenions form a 16 dimensional algebra over the reals. The set of sedenions is denoted as mathbb{S}. Two types are currently known: # Sedenions obtained by applying the Cayley Dickson construction # Conic sedenions ( 16… … Wikipedia
Hypernombre — Les hypernombres sont des nombres associés à des dimensions, découverts par le Dr. Charles A. Musès (1919 – 2000). Les hypernombres forment un système complet, cohérent, relié et naturel. Il existe dix niveaux d hypernombres, chacun possède sa… … Wikipédia en Français
Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… … Wikipedia
List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… … Wikipedia
Splitoctonion — In mathematics, the split octonions are a nonassociative extension of the quaternions (or the split quaternions). They differ from the octonions in the signature of quadratic form: the split octonions have a split signature (4,4) whereas the… … Wikipedia
Epsilon number — An epsilon number may refer to:*a type of ordinal number, the smallest being epsilon nought *Relative static permittivity (physics) *a Musean hypernumberFor a comprehensive overview on uses of the symbol ε see Epsilon … Wikipedia
Splitcomplex number — A portion of the split complex number plane showing subsets with modulus zero (red), one (blue), and minus one (green). In abstract algebra, the split complex numbers (or hyperbolic numbers) are a two dimensional commutative algebra over the real … Wikipedia
Charles Musès — Charles A(rthur) Muses (28 April 1919–2000), was an esoteric philosopher who wrote articles and books under various pseudonyms (including Musès, Musaios, Kyril Demys, Arthur Fontaine, Kenneth Demarest and Carl von Balmadis). He founded the Lion… … Wikipedia