Min-max theorem

Min-max theorem

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

This article first discusses the finite dimensional case and its applications before considering compact operators on infinite dimensional Hilbert spaces. We will see that for compact operators, the proof of the main theorem uses essentially the same idea from the finite dimensional argument.

The min-max theorem can be extended to self adjoint operators that are bounded below.

Contents

Matrices

Let A be a n × n Hermitian matrix. As with many other variational results on eigenvalues, one considers the Rayleigh–Ritz quotient R: CnR defined by

R(x) = \frac{(Ax, x)}{\|x\|^2}

where (·, ·) denotes the Euclidean inner product on Cn. Equivalently, the Rayleigh–Ritz quotient can be replaced by

f(x) = (Ax, x), \; \|x\| = 1.

For Hermitian matrices, the range of the continuous function R(x), or f(x), is a compact subset [a, b] of the real line. The maximum b and the minimum a are the largest and smallest eigenvalue of A, respectively. The min-max theorem is a refinement of this fact.

Lemma Let Sk be a k dimensional subspace.

  1. If the eigenvalues of A are listed in increasing order λ1 ≤ ... ≤ λk ≤ ... ≤ λn, then there exists xSk, ||x|| = 1 such that (Ax, x) ≥ λk.
  2. Similarly, if the eigenvalues of A are listed in decreasing order λ1 ≥ ... ≥ λk ≥ ... ≥ λn, then there exists ySk, ||y|| = 1 such that (Ay, y) ≤ λk.

Proof:

  1. Let ui be the eigenvector corresponding to λi. Consider the subspace S' = span{uk...un}. Simply by counting dimensions, we see that the subspace S'Sk is not equal to {0}. So there exists xS'Sk with ||x|| = 1. But for all xS' , (Ax, x) ≥ λk. So the claim holds.
  2. Exactly the same as 1. above.

From the above lemma follows readily the min-max theorem.

Theorem (Min-max) If the eigenvalues of A are listed in increasing order λ1 ≤ ... ≤ λk ≤ ... ≤ λn, then for all k dimensional subspace Sk,

\max_{x \in S_k, \|x\| = 1} (Ax, x) \geq \lambda_k.

This implies

\inf_{S_k} \max_{x \in S_k, \|x\| = 1} (Ax, x) \geq \lambda_k.

The min-max theorem consists of the above two equalities.

Equality is achieved when Sk is span{u1...uk}. Therefore

\lambda_k ^{\uparrow} = \min_{S_k} \max_{x \in S_k, \|x\| = 1} (Ax, x),

where the ↑ indicates it is the kth eigenvalue in the increasing order. Similarly, the second part of lemma gives

\lambda_k ^{\downarrow} = \max_{S_k} \min_{x \in S_k, \|x\| = 1} (Ax, x).


Applications

Min-max principle for singular values

The singular values {σk} of a square matrix M are the square roots of eigenvalues of M*M (equivalently MM*). An immediate consequence of the first equality from min-max theorem is

\sigma_k ^{\uparrow} = \min_{S_k} \max_{x \in S_k, \|x\| = 1} (M^* Mx, x)^{\frac{1}{2}}=
\min_{S_k} \max_{x \in S_k, \|x\| = 1} \| Mx \|.

Similarly,

\sigma_k ^{\downarrow} = \max_{S_k} \min_{x \in S_k, \|x\| = 1} \| Mx \|.

Cauchy interlacing theorem

Let A be a n × n matrix. The m × m matrix B, where mn, is called a compression of A if there exists an orthogonal projection P onto a subspace of dimension m such that PAP = B. The Cauchy interlacing theorem states:

Theorem If the eigenvalues of A are α1 ≤ ... ≤ αn, and those of B are β1 ≤ ... βj ... ≤ βm, then for all j < m+1,

\alpha_j \leq \beta_j \leq \alpha_{n-m+j}.

This can be proven using the min-max principle. Let βi have corresponding eigenvector bi and Sj be the j dimensional subspace Sj = span{b1...bj}, then

\beta_j = \max_{x \in S_j, \|x\| = 1} (Bx, x) = \max_{x \in S_j, \|x\| = 1} (PAPx, x)= \max_{x \in S_j, \|x\| = 1} (Ax, x).

According to first part of min-max,

\alpha_j \leq \beta_j.

On the other hand, if we define Smj+1 = span{bj...bm}, then


\beta_j = \min_{x \in S_{m-j+1}, \|x\| = 1} (Bx, x) = \min_{x \in S_{m-j+1}, \|x\| = 1} (PAPx, x)= \min_{x \in S_{m-j+1}, \|x\| = 1} (Ax, x) \leq \alpha_{n-m+j},

where the last inequality is given by the second part of min-max.

Notice that, when n − m = 1, we have

\alpha_j \leq \beta_j \leq \alpha_{j+1}.

Hence the name interlacing theorem.

Compact operators

Let A be a compact, Hermitian operator on a Hilbert space H. Recall that the spectrum of such an operator form a sequence of real numbers whose only possible cluster point is zero. Every nonzero number in the spectrum is an eigenvalue. It no longer makes sense here to list the positive eigenvalues in increasing order. Let the positive eigenvalues of A be

\cdots \le \lambda_k \le \cdots \le \lambda_1,

where multiplicity is taken into account as in the matrix case. When H is infinite dimensional, the above sequence of eigenvalues is necessarily infinite. We now apply the same reasoning as in the matrix case. Let SkH be a k dimensional subspace, and S' be the closure of the linear span S' = span{ukuk + 1, ...}. The subspace S' has codimension k − 1. By the same dimension count argument as in the matrix case, S'Sk is non empty. So there exists x ∈ S'  ∩ Sk with ||x|| = 1. Since it is an element of S' , such an x necessarily satisfy

(Ax, x) \le \lambda_k.

Therefore, for all Sk

\inf_{x \in S_k, \|x\| = 1}(Ax,x) \le \lambda_k

But A is compact, therefore the function f(x) = (Ax, x) is weakly continuous. Furthermore, any bounded set in H is weakly compact. This lets us replace the infimum by minimum:

\min_{x \in S_k, \|x\| = 1}(Ax,x) \le \lambda_k.

So

\sup_{S_k} \min_{x \in S_k, \|x\| = 1}(Ax,x) \le \lambda_k.

Because equality is achieved when Sk = span{&u;1...&u;k},

\max_{S_k} \min_{x \in S_k, \|x\| = 1}(Ax,x) = \lambda_k.

This is the first part of min-max theorem for compact self-adjoint operators.

Analogously, consider now a k − 1 dimensional subspace Sk−1, whose the orthogonal compliment is denoted by Sk−1. If S' = span{u1...uk},

S' \cap S_{k-1}^{\perp} \ne {0}.

So

\exists x \in S_{k-1}^{\perp} \, \|x\| = 1, (Ax, x) \ge \lambda_k.

This implies

\max_{x \in S_{k-1}^{\perp}, \|x\| = 1} (Ax, x) \ge \lambda_k

where the compactness of A was applied. Index the above by the collection of (k − 1)-dimensional subspaces gives

\inf_{S_{k-1}} \max_{x \in S_{k-1}^{\perp}, \|x\|=1} (Ax, x) \ge \lambda_k.

Pick Sk−1 = span{u1...uk−1} and we deduce

\min_{S_{k-1}} \max_{x \in S_{k-1}^{\perp}, \|x\|=1} (Ax, x) = \lambda_k.

In summary,

Theorem (Min-Max) Let A be a compact, self-adjoint operator on a Hilbert space H, whose positive eigenvalues are listed in decreasing order:

\cdots \le \lambda_k \le \cdots \le \lambda_1.

Then

\max_{S_k} \min_{x \in S_k, \|x\| = 1}(Ax,x) = \lambda_k ^{\downarrow},
\min_{S_{k-1}} \max_{x \in S_{k-1}^{\perp}, \|x\|=1} (Ax, x) = \lambda_k^{\downarrow}.

A similar pair of equalities hold for negative eigenvalues.

References

  • M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, 1978.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Min-Max-Theorem — Das Min Max Theorem ist ein grundlegendes Lösungskonzept in der Spieltheorie und wird mitunter als Hauptsatz für 2 Personen Nullsummenspiele bezeichnet.[1] Die Minimierung der gegnerischen Maximal Auszahlung beider Spieler steht im Vordergrund… …   Deutsch Wikipedia

  • Max-flow min-cut theorem — In optimization theory, the max flow min cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the minimum capacity which when removed in a specific way from the network causes the… …   Wikipedia

  • Max-Flow-Min-Cut-Theorem — Das Max Flow Min Cut Theorem ist ein Satz der Graphentheorie über den maximalen Fluss in Flussnetzwerken. Er leitet sich aus Mengers Theorem ab. Er besagt: Der maximale Fluss im Netzwerk hat genau den Wert dessen minimalen Schnitts. Anders gesagt …   Deutsch Wikipedia

  • min|i|max — «MIHN ee maks», noun, adjective, verb. –n. 1. that strategy in the theory of games which provides the minimum of a player s maximum possible losses (contrasted with maximin). 2. = minimax theorem. (Cf. ↑minimax theorem) –adj. of or having to do… …   Useful english dictionary

  • Mini-Max — Minimax bzw. Mini Max bezeichnet: Min Max Theorem, ein Spezialfall des Existenzsatzes für Nash Gleichgewichte für Zwei Personen Nullsummenspiele Minimax Algorithmus, ein Algorithmus zur Berechnung solcher Gleichgewichte für Spiele mit perfekter… …   Deutsch Wikipedia

  • Mini Max — Minimax bzw. Mini Max bezeichnet: Min Max Theorem, ein Spezialfall des Existenzsatzes für Nash Gleichgewichte für Zwei Personen Nullsummenspiele Minimax Algorithmus, ein Algorithmus zur Berechnung solcher Gleichgewichte für Spiele mit perfekter… …   Deutsch Wikipedia

  • Max Karl Ernst Ludwig Planck — Max Planck Max Karl Ernst Ludwig Planck (* 23. April 1858 in Kiel; † 4. Oktober 1947 in Göttingen) war ein bedeutender deutscher Physiker und Nobelpreisträger. Er wird als Begründer der Quantenphysik betrachtet …   Deutsch Wikipedia

  • Menger's theorem — In the mathematical discipline of graph theory and related areas, Menger s theorem is a basic result about connectivity in finite undirected graphs. It was proved for edge connectivity and vertex connectivity by Karl Menger in 1927. The edge… …   Wikipedia

  • König's theorem (graph theory) — In the mathematical area of graph theory, König s theorem describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. Setting A graph is bipartite if its vertices can be partitioned into …   Wikipedia

  • Perron–Frobenius theorem — In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”