Courant minimax principle

﻿
Courant minimax principle

In mathematics, the Courant minimax principle gives the eigenvalues of a real symmetric matrix. It is named after Richard Courant.

Introduction

The Courant minimax principle gives a condition for finding the eigenvalues for a real symmetric matrix. The Courant minimax principle is as follows:

For any real symmetric matrix A,

$\lambda_k=\min\limits_C\max\limits_{\binom{\| x\| =1}{Cx=0}}\langle Ax,x\rangle,$

where C is any (k − 1) × n matrix.

Notice that the vector x is an eigenvector to the corresponding eigenvalue λ.

The Courant minimax principle is a result of the maximum theorem, which says that for q(x) = <Ax,x>, A being a real symmetric matrix, the largest eigenvalue is given by λ1 = max||x||=1q(x) = q(x1), where x1 is the corresponding eigenvectors. Also (in the maximum theorem) subsequent eigenvalues λk and eigenvectors xk are found by induction and orthogonal to each other; therefore, λk = max q(xk) with <x,xk> = 0, j < k.

The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if ||x|| = 1 is a hypersphere then the matrix A deforms that hypersphere into an ellipsoid. When the major axis on the intersecting hyperplane are maximized — i.e., the length of the quadratic form q(x) is maximized — this is the eigenvector and its length is the eigenvalue. All other eigenvectors will be perpendicular to this.

The minimax principle also generalizes to eigenvalues of positive self-adjoint operators on Hilbert spaces, where it is commonly used to study the Sturm–Liouville problem.

References

• Courant, Richard; Hilbert, David (1989), Method of Mathematical Physics, Vol. I, Wiley-Interscience, ISBN 0471504475  (Pages 31-34; in most textbooks the "maximum-minimum method" is usually credited to Rayleigh and Ritz, who applied the calculus of variations in the theory of sound.)
• Keener, James P. Principles of Applied Mathematics: Transformation and Approximation. Cambridge: Westview Press, 2000. ISBN 0-7382-0129-4
• Horn, Roger; Johnson, Charles (1985), Matrix Analysis, Cambridge University Press, p. 179, ISBN 978-0-521-38632-6

Wikimedia Foundation. 2010.

Look at other dictionaries:

• Richard Courant — Infobox Scientist box width = 300px name = Richard Courant image size = 300px caption = birth date = January 8, 1888 birth place = Lublinitz, Kingdom of Prussia death date = January 27 1972 death place = residence = citizenship = nationality =… …   Wikipedia

• Théorème du minimax — de von Neumann John von Neumann …   Wikipédia en Français

• Théorème du minimax de von Neumann — John von Neumann Vers où faut il …   Wikipédia en Français

• List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

• Min-max theorem — Variational theorem redirects here. The term is also sometimes applied to the variational principle. In linear algebra and functional analysis, the min max theorem, or variational theorem, or Courant–Fischer–Weyl min max principle, is a result… …   Wikipedia

• Spectral theory of ordinary differential equations — In mathematics, the spectral theory of ordinary differential equations is concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl… …   Wikipedia

• Théorème fondamental de la théorie des jeux — Théorème du minimax de von Neumann John von Neumann …   Wikipédia en Français

• List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

• Controverses du cartésianisme — Articles principaux : René Descartes et Cartésianisme. Cet article recense les grandes disputes auxquelles le philosophe René Descartes fut mêlé, contre son gré ou à son initiative, de son vivant. La philosophie de Descartes s affine au… …   Wikipédia en Français