# List of moments of inertia

﻿
List of moments of inertia

The following is a list of moments of inertia. Mass moments of inertia have units of dimension mass × length2. It is the rotational analogue to mass. It should not be confused with the second moment of area (area moment of inertia), which is used in bending calculations.

The following moments of inertia assume constant density throughout the object, and the axis of rotation is taken to be through the center of mass, unless otherwise specified.

Description Figure Moment(s) of inertia Comment
Point mass m at a distance r from the axis of rotation. I = mr2
Two point masses, M and m, with reduced mass μ and separated by a distance, x. $I = \frac{ M m }{ M \! + \! m } x^2 = \mu x^2$
Rod of length L and mass m
(Axis of rotation at the end of the rod)  $I_{\mathrm{end}} = \frac{m L^2}{3} \,\!$   This expression assumes that the rod is an infinitely thin (but rigid) wire. This is also a special case of the thin rectangular plate with axis of rotation at the end of the plate, with h = L and w = 0.
Rod of length L and mass m  $I_{\mathrm{center}} = \frac{m L^2}{12} \,\!$   This expression assumes that the rod is an infinitely thin (but rigid) wire. This is a special case of the thin rectangular plate with axis of rotation at the center of the plate, with w = L and h = 0.
Thin circular hoop of radius r and mass m  $I_z = m r^2\!$ $I_x = I_y = \frac{m r^2}{2}\,\!$
This is a special case of a torus for b=0. (See below.), as well as of a thick-walled cylindrical tube with open ends, with r1=r2 and h=0.
Thin, solid disk of radius r and mass m  $I_z = \frac{m r^2}{2}\,\!$ $I_x = I_y = \frac{m r^2}{4}\,\!$
This is a special case of the solid cylinder, with h=0.
Thin cylindrical shell with open ends, of radius r and mass m  $I = m r^2 \,\!$   This expression assumes the shell thickness is negligible. It is a special case of the thick-walled cylindrical tube for r1=r2.

Also, a point mass (m) at the end of a rod of length r has this same moment of inertia and the value r is called the radius of gyration.

Solid cylinder of radius r, height h and mass m  $I_z = \frac{m r^2}{2}\,\!$ $I_x = I_y = \frac{1}{12} m\left(3r^2+h^2\right)$
This is a special case of the thick-walled cylindrical tube, with r1=0. (Note: X-Y axis should be swapped for a standard right handed frame)
Thick-walled cylindrical tube with open ends, of inner radius r1, outer radius r2, length h and mass m  $I_z = \frac{1}{2} m\left({r_1}^2 + {r_2}^2\right)$ $I_x = I_y = \frac{1}{12} m\left[3\left({r_2}^2 + {r_1}^2\right)+h^2\right]$
or when defining the normalized thickness tn = t/r and letting r = r2,
then $I_z = mr^2\left(1-t_n+\frac{1}{2}{t_n}^2\right)$
With a density of ρ and the same geometry $I_z = \frac{1}{2} \pi\rho h\left({r_2}^4 - {r_1}^4\right)$ $I_x = I_y = \frac{1}{12} \pi\rho h\left(3({r_2}^4 - {r_1}^4)+h^2({r_2}^2 - {r_1}^2)\right)$
Sphere (hollow) of radius r and mass m  $I = \frac{2 m r^2}{3}\,\!$   A hollow sphere can be taken to be made up of two stacks of infinitesimally thin, circular hoops, where the radius differs from 0 to r (or a single stack, , where the radius differs from -r to r).
Ball (solid) of radius r and mass m  $I = \frac{2 m r^2}{5}\,\!$   A sphere can be taken to be made up of two stacks of infinitesimally thin, solid discs, where the radius differs from 0 to r (or a single stack, where the radius differs from -r to r).

Also, it can be taken to be made up of infinitesimally thin, hollow spheres, where the radius differs from 0 to r.

Right circular cone with radius r, height h and mass m  $I_z = \frac{3}{10}mr^2 \,\!$ $I_x = I_y = \frac{3}{5}m\left(\frac{r^2}{4}+h^2\right) \,\!$  
Torus of tube radius a, cross-sectional radius b and mass m. About a diameter: $\frac{1}{8}\left(4a^2 + 5b^2\right)m$  

About the vertical axis: $\left(a^2 + \frac{3}{4}b^2\right)m$  

Ellipsoid (solid) of semiaxes a, b, and c with axis of rotation a and mass m  $I_a = \frac{m (b^2+c^2)}{5}\,\!$
Thin rectangular plate of height h and of width w and mass m
(Axis of rotation at the end of the plate)  $I_e = \frac {m h^2}{3}+\frac {m w^2}{12}\,\!$
Thin rectangular plate of height h and of width w and mass m  $I_c = \frac {m(h^2 + w^2)}{12}\,\!$  
Solid cuboid of height h, width w, and depth d, and mass m  $I_h = \frac{1}{12} m\left(w^2+d^2\right)$ $I_w = \frac{1}{12} m\left(h^2+d^2\right)$ $I_d = \frac{1}{12} m\left(h^2+w^2\right)$
For a similarly oriented cube with sides of length s, $I_{CM} = \frac{m s^2}{6}\,\!$.
Solid cuboid of height D, width W, and length L, and mass m with the longest diagonal as the axis.  $I = \frac{m\left(W^2D^2+L^2D^2+L^2W^2\right)}{6\left(L^2+W^2+D^2\right)}$ For a cube with sides s, $I = \frac{m s^2}{6}\,\!$.
Plane polygon with vertices $\vec{P}_{1}$, $\vec{P}_{2}$, $\vec{P}_{3}$, ..., $\vec{P}_{N}$ and

mass m uniformly distributed on its interior, rotating about an axis perpendicular to the plane and passing through the origin.  $I=\frac{m}{6}\frac{\sum\limits_{n=1}^{N-1}\|\vec{P}_{n+1}\times\vec{P}_{n}\|((\vec{P}_{n+1}\cdot\vec{P}_{n+1})+(\vec{P}_{n+1}\cdot\vec{P}_{n})+(\vec{P}_{n}\cdot\vec{P}_{n}))}{\sum\limits_{n=1}^{N-1}\|\vec{P}_{n+1}\times\vec{P}_{n}\|}$ This expression assumes that the polygon is star-shaped. The vectors $\vec{P}_{1}$, $\vec{P}_{2}$, $\vec{P}_{3}$, ..., $\vec{P}_{N}$ are position vectors of the vertices.
Infinite disk with mass normally distributed on two axes around the axis of rotation

(i.e. $\rho(x,y) = \tfrac{m}{2\pi ab}\, e^{-((x/a)^2+(y/b)^2)/2}$ Where : ρ(x,y) is the mass-density as a function of x and y).  $I = m (a^2+b^2) \,\!$

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• List of area moments of inertia — The following is list of area moments of inertia. The area moment of inertia or second moment of area has a unit of dimension length4, and should not be confused with the mass moment of inertia. Each is with respect to a horizontal axis through… …   Wikipedia

• List of moment of inertia tensors — This list of moment of inertia tensors is given for principal axes of each object.ee also*Moment of inertia *List of area moments of inertia *The inertia tensor of a triangle in three dimensional space * [http://number none.com/blow/inertia/bb… …   Wikipedia

• List of NFL nicknames — The following are nicknames throughout the history of the NFL. Contents 1 Teams 2 Players 3 Places 4 Fans 5 …   Wikipedia

• List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

• List of Wing Commander characters — The Wing Commander series of video games and novels have developed a wide variety of characters and personalities.In order of appearance: Historical figures(pre 27th Century) * Sivar * Karga * Sun Wan Lu * Zhing * Harold Jarvis * Tralchar * Shari …   Wikipedia

• List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

• Moment of inertia — This article is about the moment of inertia of a rotating object, also termed the mass moment of inertia. For the moment of inertia dealing with the bending of a beam, also termed the area moment of inertia, see second moment of area. In… …   Wikipedia

• Flywheel — [ Leonardo da Vinci] A flywheel is a mechanical device with significant moment of inertia used as a storage device for rotational energy. Flywheels resist changes in their rotational speed, which helps steady the rotation of the shaft when a… …   Wikipedia

• Angular momentum — For a generally accessible and less technical introduction to the topic, see Introduction to angular momentum. Classical mechanics Newton s Second Law …   Wikipedia

• Lists of mathematics topics — This article itemizes the various lists of mathematics topics. Some of these lists link to hundreds of articles; some link only to a few. The extremely long list of mathematics articles contains all mathematical articles in alphabetical order.… …   Wikipedia