Annealing (metallurgy)


Annealing (metallurgy)

Annealing, in metallurgy and materials science, is a heat treatment wherein a material is altered, causing changes in its properties such as strength and hardness. It is a process that produces conditions by heating to above the recrystallization temperature, maintaining a suitable temperature, and then cooling. Annealing is used to induce ductility, soften material, relieve internal stresses, refine the structure by making it homogeneous, and improve cold working properties.

In the cases of copper, steel, silver, and brass, this process is performed by substantially heating the material (generally until glowing) for a while and allowing it to cool. Unlike ferrous metals—which must be cooled slowly to anneal—copper, silver[1] and brass can be cooled slowly in air or quickly by quenching in water. In this fashion the metal is softened and prepared for further work such as shaping, stamping, or forming.

Contents

Thermodynamics

Annealing occurs by the diffusion of atoms within a solid material, so that the material progresses towards its equilibrium state. Heat is needed to increase the rate of diffusion by providing the energy needed to break bonds. The movement of atoms has the effect of redistributing and destroying the dislocations in metals and (to a lesser extent) in ceramics. This alteration in dislocations allows metals to deform more easily, so increases their ductility.[citation needed]

The amount of process-initiating Gibbs free energy in a deformed metal is also reduced by the annealing process. In practice and industry, this reduction of Gibbs free energy is termed "stress relief".[citation needed]

The relief of internal stresses is a thermodynamically spontaneous process; however, at room temperatures, it is a very slow process. The high temperatures at which the annealing process occurs serve to accelerate this process.[citation needed]

The reaction facilitating the return of the cold-worked metal to its stress-free state has many reaction pathways, mostly involving the elimination of lattice vacancy gradients within the body of the metal. The creation of lattice vacancies is governed by the Arrhenius equation, and the migration/diffusion of lattice vacancies are governed by Fick’s laws of diffusion.[2]

Mechanical properties, such as hardness and ductility, change as dislocations are eliminated and the metal's crystal lattice is altered. On heating at specific temperature and cooling it is possible to bring the atom at the right lattice site and new grain growth can improve the mechanical properties.[citation needed]

Stages

There are three stages in the annealing process, with the first being the recovery phase, which results in softening of the metal through removal of crystal defects (the primary type of which is the linear defect called a dislocation) and the internal stresses which they cause. Recovery phase covers all annealing phenomena that occur before the appearance of new strain-free grains.[3] The second phase is recrystallization, where new strain-free grains nucleate and grow to replace those deformed by internal stresses.[3] If annealing is allowed to continue once recrystallization has been completed, grain growth will occur, in which the microstructure starts to coarsen and may cause the metal to have less than satisfactory mechanical properties.[citation needed]

Controlled atmospheres

The high temperature of annealing may result in oxidation of the metal’s surface, resulting in scale. If scale is to be avoided, annealing is carried out in a special atmosphere, such as with endothermic gas (a mixture of carbon monoxide, hydrogen gas, and nitrogen gas). Annealing is also done in forming gas, a mixture of hydrogen and nitrogen.

The magnetic properties of mu-metal (Espey cores) are introduced by annealing the alloy in a hydrogen atmosphere.

Setup and equipment

Typically, large ovens are used for the annealing process. The inside of the oven is large enough to place the workpiece in a position to receive maximum exposure to the circulating heated air. For high volume process annealing, gas fired conveyor furnaces are often used. For large workpieces or high quantity parts Car-bottom furnaces will be used in order to move the parts in and out with ease. Once the annealing process has been successfully completed, the workpieces are sometimes left in the oven in order for the parts to have a controlled cooling process. While some workpieces are left in the oven to cool in a controlled fashion, other materials and alloys are removed from the oven. After being removed from the oven, the workpieces are often quickly cooled off in a process known as quench hardening. Some typical methods of quench hardening materials involve the use of media such as air, water, oil, or salt.[citation needed] Quench hardening is generally applicable to some ferrous alloys, but not copper alloys.

Diffusion annealing of semiconductors

In the semiconductor industry, silicon wafers are annealed, so that dopant atoms, usually boron, phosphorus or arsenic, can diffuse into substitutional positions in the crystal lattice, resulting in drastic changes in the electrical properties of the semiconducting material.

Specialized cycles

Normalization

Normalization is an annealing process in which a metal is cooled in air after heating in order to relieve stress.

It can also be referred to as: Heating a ferrous alloy to a suitable temperature above the transformation temperature range and cooling in air to a temperature substantially below the transformation range.

This process is typically confined to hardenable steel. It is used to refine grains which have been deformed through cold work, and can improve ductility and toughness of the steel. It involves heating the steel to just above its upper critical point. It is soaked for a short period then allowed to cool in air. Small grains are formed which give a much harder and tougher metal with normal tensile strength and not the maximum ductility achieved by annealing. It eliminates columnar grains and dendritic segregation that sometimes occurs during casting. Normalizing improves machinability of a component and provides dimensional stability if subjected to further heat treatment processes.

Process annealing

Process annealing, also called "intermediate annealing", "subcritical annealing", or "in-process annealing", is a heat treatment cycle that restores some of the ductility to a work piece allowing it be worked further without breaking. Ductility is important in shaping and creating a more refined piece of work through processes such as rolling, drawing, forging, spinning, extruding and heading. The piece is heated to a temperature typically below the austenizing temperature, and held there long enough to relieve stresses in the metal. The piece is finally cooled slowly to room temperature. It is then ready again for additional cold working. This can also be used to ensure there is reduced risk of distortion of the work piece during machining, welding, or further heat treatment cycles.

The temperature range for process annealing ranges from 260 °C(500 °F) to 760 °C(1400 °F), depending on the alloy in question.

Full anneal

Full annealing temperature ranges

A full anneal typically results in the second most ductile state a metal can assume for metal alloy. It creates an entirely new homogeneous and uniform structure with good dynamic properties. To perform a full anneal on steel for example, steel is heated to its annealing point (about 50°C above the austenic temperature as graph shows) and held for sufficient time to allow the material to fully austenitize, to form austenite or austenite-cementite grain structure. The material is then allowed to cool slowly so that the equilibrium microstructure is obtained. In some cases this means the material is allowed to air cool. In other cases the material is allowed to furnace cool. The details of the process depend on the type of metal and the precise alloy involved. In any case the result is a more ductile material that has greater stretch ratio and reduction of area properties but a lower yield strength and a lower tensile strength. This process is also called LP annealing for lamellar pearlite in the steel industry as opposed to a process anneal which does not specify a microstructure and only has the goal of softening the material. Often material that is to be machined, will be annealed, then be followed by further heat treatment to obtain the final desired properties.

Short cycle anneal

Short cycle annealing is used for turning normal ferrite into malleable ferrite. It consists of heating, cooling, and then heating again from 4 to 8 hours.

Resistive heating

Resistive heating can be used to efficiently anneal copper wire; the heating system employs a controlled electrical short circuit. It can be advantageous because it does not require a temperature-regulated furnace like other methods of annealing.

The process consists of two conductive pulleys (step pulleys) which the wire passes across after it is drawn. The two pulleys have an electrical potential across them, which causes the wire to form a short circuit. The Joule effect causes the temperature of the wire to rise to approximately 400 °C. This temperature is affected by the rotational speed of the pulleys, the ambient temperature, and the voltage applied. Where t is the temperature of the wire, K is a constant, V is the voltage applied, r is the number of rotations of the pulleys per minute, and ta is the ambient temperature:

t = ((KV ²)/(r))+ta

The constant K depends on the diameter of the pulleys and the resistivity of the copper.

Purely in terms of the temperature of the copper wire, an increase in the speed with which the wire passes through the pulley system has the same effect as an increase in resistance. Therefore, the speed with which the wire can be drawn through varies quadratically as the voltage applied.

See also

References

  1. ^ http://www.handyharmancanada.com/hbpm/silver/silver.htm
  2. ^ Van Vlack, L.H. Elements of Materials Science and Engineering, Addison-Wesley, 1985, p 134
  3. ^ a b Verhoeven, J.D. Fundamentals of Physical Metallurgy, Wiley, New York, 1975, p. 326

Further reading

  • Thesis of Degree, Cable Manufacture and Tests of General Use and Energy. - Jorge Luis Pedraz (1994), UNI, Files, Peru.
  • Dynamic annealing of the Copper wire by using a Controlled Short circuit. = Jorge Luis Pedraz (1999), Peru: Lima , CONIMERA 1999, INTERCON 99,

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Annealing — Annealing. См. Отжиг. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • Annealing twin — Annealing twin. См. Отжиг на зеркально симметричную структуру. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • Annealing (glass) — Annealing is a process of slowly cooling glass to relieve internal stresses after it was formed. The process may be carried out in a temperature controlled kiln known as a Lehr. [E. F. Collins (1921) Electrically heated glass annealing lehr.… …   Wikipedia

  • Annealing — may refer to: *Annealing (metallurgy), a heat treatment that alters the microstructure of a material causing changes in properties such as strength and hardness *Annealing (glass), heating a piece of glass to remove stress *Annealing (biology),… …   Wikipedia

  • metallurgy — metallurgic, metallurgical, adj. metallurgically, adv. metallurgist /met l err jist/ or, esp. Brit., /meuh tal euhr jist/, n. /met l err jee/ or, esp. Brit., /meuh tal euhr jee/, n. 1. the technique or science of working or heating metals so as… …   Universalium

  • Metallurgy — Georg Agricola, author of De re metallica, an important early book on metal extraction Metallurgy is a domain of materials science that studies the physical and chemical behavior of metallic elements, their intermetallic compounds, and their… …   Wikipedia

  • Metallurgy during the Copper Age in Europe — The Copper Age, also called the Eneolithic or the Chalcolithic Age, has been traditionally understood as a transitional period between the Neolithic and the Bronze Age, in which a gradual introduction of the metal (native copper) took place,… …   Wikipedia

  • Metallurgy in pre-Columbian America — Further information: Metallurgy in pre Columbian Mesoamerica Sican tumi, or ceremonial knife, Peru, 850–1500 CE Metallury in pre Columbian America is the extraction and purification of metals, as well as creating metal alloys and fabrication with …   Wikipedia

  • Black annealing — Black annealing. См. Черный отжиг. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • Blue annealing — Blue annealing. См. Синий отжиг. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.