Negligible set

Negligible set

In mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose. As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored when studying the integral of a measurable function.

Negligible sets define several useful concepts that can be applied in various situations, such as truth almost everywhere. In order for these to work, it is generally only necessary that the negligible sets form an ideal; that is, that the empty set be negligible, the union of two negligible sets be negligible, and any subset of a negligible set be negligible. For some purposes, we also need this ideal to be a sigma-ideal, so that countable unions of negligible sets are also negligible. If I and J are both ideals of subsets of the same set X, then one may speak of I-negligible and J-negligible subsets.

The opposite of a negligible set is a generic property, which has various forms.

Examples

Let X be the set N of natural numbers, and let a subset of N be negligible if it is finite. Then the negligible sets form an ideal. This idea can be applied to any infinite set; but if applied to a finite set, every subset will be negligible, which is not a very useful notion.

Or let X be an uncountable set, and let a subset of X be negligible if it is countable. Then the negligible sets form a sigma-ideal.

Let X be a measurable space equipped with a measure m, and let a subset of X be negligible if it is m-null. Then the negligible sets form a sigma-ideal. Every sigma-ideal on X can be recovered in this way by placing a suitable measure on X, although the measure may be rather pathalogical.

Let X be a topological space, and let a subset be negligible if it is of first category, that is, if it is a countable union of nowhere-dense sets (where a set is nowhere-dense if it is not dense in any open set). Then the negligible sets form a sigma-ideal. X is a Baire space if the interior of every such negligible set is empty.

Let X be a directed set, and let a subset of X be negligible if it has an upper bound. Then the negligible sets form an ideal. The first example is a special case of this using the usual ordering of N.

In a coarse structure, the controlled sets are negligible.

Derived concepts

Let X be a set, and let I be an ideal of negligible subsets of X. If p is a proposition about the elements of X, then p is true almost everywhere if the set of points where p is true is the complement of a negligible set. That is, p may not always be true, but it's false so rarely that this can be ignored for the purposes at hand.

If f and g are functions from X to the same space Y, then f and g are equivalent if they are equal almost everywhere. To make the introductory paragraph precise, then, let X be N, and let the negligible sets be the finite sets. Then f and g are sequences. If Y is a topological space, then f and g have the same limit, or both have none. (When you generalise this to a directed sets, you get the same result, but for nets.) Or, let X be a measure space, and let negligible sets be the null sets. If Y is the real line R, then either f and g have the same integral, or neither integral is defined.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • negligible set — noun A set that is small enough that it can be ignored for some purpose. Syn: null set …   Wiktionary

  • Negligible function — For other uses, see negligible. In mathematics, a negligible function is a function such that for every positive integer c there exists an integer Nc such that for all x > Nc, Equivalently, we may also use the following definition. A …   Wikipedia

  • Meagre set — In the mathematical fields of general topology and descriptive set theory, a meagre set (also called a meager set or a set of first category) is a set that, considered as a subset of a (usually larger) topological space, is in a precise sense… …   Wikipedia

  • Nowhere dense set — A subset A of a topological space X is nowhere dense in X if and only if the interior of the closure of A is empty. The order of operations is important. For example, the set of rational numbers, as a subset of R has the property that the closure …   Wikipedia

  • Polar set (potential theory) — In mathematics, in the area of classical potential theory, polar sets are the negligible sets , similar to the way in which sets of measure zero are the negligible sets in measure theory. Definition A set Z in R^n (where nge 2) is a polar set if… …   Wikipedia

  • null set — noun a) negligible set (in measure theory, a set which is negligible for the purposes of the measure in question) b) A less common name for the empty set …   Wiktionary

  • List of exceptional set concepts — This is a list of exceptional set concepts. In mathematics, and in particular in mathematical analysis, it is very useful to be able to characterise subsets of a given set X as small , in some definite sense, or large if their complement in X is… …   Wikipedia

  • Ideal (set theory) — In the mathematical field of set theory, an ideal is a collection of sets that are considered to be small or negligible . Every subset of an element of the ideal must also be in the ideal (this codifies the idea that an ideal is a notion of… …   Wikipedia

  • Null set — In mathematics, a null set is a set that is negligible in some sense. For different applications, the meaning of negligible varies. In measure theory, any set of measure 0 is called a null set (or simply a measure zero set). More generally,… …   Wikipedia

  • Strategies for Engineered Negligible Senescence — (SENS) is the name Aubrey de Grey gives to his proposal to research regenerative medical procedures to periodically repair all the age related damage in the human body, thereby maintaining a youthful state indefinitely.[1][2] The term first… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”