Cohen-Daubechies-Feauveau wavelet
An example of the 2D wavelet transform that is used in JPEG2000

Cohen-Daubechies-Feauveau wavelet are the historically first family of biorthogonal wavelets, which was made popular by Ingrid Daubechies[1][2]. These are not the same as the orthogonal Daubechies wavelets, and also not very similar in shape and properties. However their construction idea is the same.

The JPEG 2000 compression standard uses the biorthogonal CDF 5/3 wavelet (also called the LeGall 5/3 wavelet) for lossless compression and a CDF 9/7 wavelet for lossy compression.

## Properties

• The primal generator is a B-spline if the simple factorization qprim(X) = 1 (see below) is chosen
• The dual generator has the maximum number of smoothness factors which is possible for its length.
• All generators and wavelets in this family are symmetric.

## Construction

For every positive integer A there exists a unique polynomial QA(X) of degree A-1 satisfying the identity

$(1-X/2)^A\,Q_A(X)+(X/2)^A\,Q_A(2-X)=1$.

This is the same polynomial as used in the construction of the Daubechies wavelets. But, instead of a spectral factorization, here we try to factor

$Q_A(X)=q_{\mathrm{prim}}(X)\,q_{\mathrm{dual}}(X)$,

where the factors are polynomials with real coefficients and constant coefficient 1. Then,

$a_{\mathrm{prim}}(Z)=2Z^d\,\left(\frac{1+Z}2\right)^A\,q_{\mathrm{prim}}(1-(Z+Z^{-1})/2)$

and

$a_{\mathrm{dual}}(Z)=2Z^d\,\left(\frac{1+Z}2\right)^A\,q_{\mathrm{dual}}(1-(Z+Z^{-1})/2)$

form a biorthogonal pair of scaling sequences. d is some integer used to center the symmetric sequences at zero or to make the corresponding discrete filters causal.

Depending on the roots of QA(X), there may be up to 2A − 1 different factorizations. A simple factorization is qprim(X) = 1 and qdual(X) = QA(X), then the primary scaling function is the B-spline of order A-1. For A=1 one obtains the orthogonal Haar wavelet.

## Tables of coefficients

Cohen-Daubechies-Feauveau wavelet 5/3 used in JPEG 2000 standard.

For A=2 one obtains in this way the LeGall 5/3-wavelet:

A QA(X) qprim(X) qdual(X) aprim(Z) adual(Z)
2 1 + X 1 1 + X $\frac12(1+Z)^2\,Z$ $\frac12(1+Z)^2\,\left(-\frac12 + 2\,Z - \frac12\,Z^2\right)$

For A=4 one obtains the 9/7-CDF-wavelet. One gets $Q_4(X)=1 + 2\,X + 5/2\,X^2 + 5/2\,X^3$, this polynomial has exactly one real root, thus it is the product of a linear factor $1-c\,X$ and a quadratic factor. The coefficient c, which is the inverse of the root, has an approximate value of -1.4603482098.

A QA(X) qprim(X) qdual(X)
4 $1 + 2\,X + 5/2\,X^2 + 5/2\,X^3$ $1-c\,X$ $1 + (c + 2)*\,X + (c^2 + 2*c + 5/2)\,X^2$

For the coefficients of the centered scaling and wavelet sequences one gets numerical values in an implementation–friendly form

k Analysis lowpass filter

Analysis highpass filter

(bdual)

Synthesis lowpass filter

(aprim)

Synthesis highpass filter

(1/2 bprim)

-4 0.026748757411 0 0 0.026748757411
-3 -0.016864118443 0.091271763114 -0.091271763114 0.016864118443
-2 -0.078223266529 -0.057543526229 -0.057543526229 -0.078223266529
-1 0.266864118443 -0.591271763114 0.591271763114 -0.266864118443
0 0.602949018236 1.11508705 1.11508705 0.602949018236
1 0.266864118443 -0.591271763114 0.591271763114 -0.266864118443
2 -0.078223266529 -0.057543526229 -0.057543526229 -0.078223266529
3 -0.016864118443 0.091271763114 -0.091271763114 0.016864118443
4 0.026748757411 0 0 0.026748757411

## Numbering

There are two concurring numbering schemes for wavelets of the CDF family.

• the number of smoothness factors of the lowpass filters, or equivalently the number of vanishing moments of the highpass filters, e.g. 2,2
• the sizes of the lowpass filters, or equivalently the sizes of the highpass filters, e.g. 5,3

The first numbering was used in Daubechies' book Ten lectures on wavelets. Neither of this numbering is unique. The number of vanishing moments does not tell about the chosen factorization. A filterbank with filter sizes 7 and 9 can have 6 and 2 vanishing moments when using the trivial factorization, or 4 and 4 vanishing moments as it is the case for the JPEG 2000 wavelet. The same wavelet may therefore be referred to as "CDF 9/7" (based on the filter sizes) or "biorthogonal 4.4" (based on the vanishing moments).

## Lifting decomposition

For the trivially factorized filterbanks a lifting decomposition can be explicitly given.[3]

### Even number of smoothness factors

Let n be the number of smoothness factors in the B-spline lowpass filter, which shall be even.

Then define recursively

$a_0 = \frac{1}{n}$
$a_m = \frac{1}{(n^2-4\cdot m^2)\cdot a_{m-1}}$

The lifting filters are

$s_{m}(z) = a_m\cdot(2\cdot m + 1)\cdot(1 + z^{(-1)^m})$

Conclusively the interim results of the lifting are

x − 1(z) = z
x0(z) = 1
$x_{m+1}(z) = x_{m-1}(z) + a_m\cdot(2\cdot m+1)\cdot(z+z^{-1}) \cdot z^{(-1)^m} \cdot x_{m}(z)$

$x_{n/2}(z) = 2^{-n/2} \cdot (1+z)^n \cdot z^{n/2 \bmod 2 - n/2}$

The filters xn / 2 and xn / 2 − 1 constitute the CDF-n,0 filterbank.

### Odd number of smoothness factors

Now, let n be odd.

Then define recursively

$a_0 = \frac{1}{n}$
$a_m = \frac{1}{(n^2-(2\cdot m-1)^2)\cdot a_{m-1}}$

The lifting filters are

$s_{m}(z) = a_m\cdot((2\cdot m + 1) + (2\cdot m - 1)\cdot z) / z^{m \bmod 2}$

Conclusively the interim results of the lifting are

x − 1(z) = z
x0(z) = 1
$x_{1}(z) = x_{-1}(z)+a_0\cdot x_0(z)$
$x_{m+1}(z) = x_{m-1}(z) + a_m\cdot((2\cdot m+1)\cdot z + (2\cdot m-1)\cdot z^{-1}) \cdot z^{(-1)^m} \cdot x_{m}(z)$

x(n + 1) / 2(z)∼(1 + z)n

where we neglect the translation and the constant factor.

The filters x(n + 1) / 2 and x(n − 1) / 2 constitute the CDF-n,1 filterbank.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Cohen-Daubechies-Feauveau-Wavelet — Cohen Daubechies Feauveau Wavelets (CDF Wavelets) sind die historisch gesehen erste Familie der biorthogonalen Wavelets. Sie wurden von Albert Cohen, Ingrid Daubechies und Jean Christophe Feauveau konstruiert und 1990 vorgestellt.[1] CDF Wavelets …   Deutsch Wikipedia

• Wavelet — A wavelet is a mathematical function used to divide a given function or continuous time signal into different frequency components and study each component with a resolution that matches its scale. A wavelet transform is the representation of a… …   Wikipedia

• Daubechies wavelet — Daubechies 20 2 d wavelet (Wavelet Fn X Scaling Fn) Named after Ingrid Daubechies, the Daubechies wavelets are a family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for… …   Wikipedia

• Daubechies-Wavelets — Unter Daubechies Wavelets, benannt nach Ingrid Daubechies, versteht man in der digitalen Signalverarbeitung eine Klasse orthogonaler Wavelet Funktionen, die einen kompakten Träger haben. Sie gehören zu den am häufigsten praktisch eingesetzten… …   Deutsch Wikipedia

• Lifting scheme — The lifting scheme is a technique for both designing wavelets and performing the discrete wavelet transform.Actually it is worthwhile to merge these steps and design the wavelet filters while performing the wavelet transform.This is then called… …   Wikipedia

• List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

• CDF — may refer to:* Cardiff Central railway station, Wales; National Rail station code CDF * Collider Detector at Fermilab * Chief of the Defence Force, commander of the Australian Defence Force * Ciskei Defence Forces * Congolese franc, the ISO 4217… …   Wikipedia

• Daub4 — Unter Daubechies Wavelets, benannt nach Ingrid Daubechies, versteht man in der digitalen Signalverarbeitung eine Klasse orthogonaler Wavelet Funktionen, die einen kompakten Träger haben. Sie gehören zu den am häufigsten praktisch eingesetzten… …   Deutsch Wikipedia

• CDF — Die Abkürzung CDF steht für: Calibration Data Format, ein Datenaustauschformat der ASAM, das hauptsächlich im Automobilbau Verwendung findet Capillary suction of De icing solution an Freeze thaw test, ein Prüfverfahren zur Ermittlung des Frost… …   Deutsch Wikipedia

• Fouille de flots de données — Exploration de données Articles principaux Exploration de données Fouille de données spatiales Fouille du web Fouille de flots de données Fouille de textes …   Wikipédia en Français