Microtubule-associated protein


Microtubule-associated protein

In cell biology, microtubule-associated proteins (MAPs) are proteins that interact with the microtubules of the cellular cytoskeleton.

Contents

Function

MAPs bind to the tubulin subunits that make up microtubules to regulate their stability. A large variety of MAPs have been identified in many different cell types, and they have been found to carry out a wide range of functions. These include both stabilizing and destabilizing microtubules, guiding microtubules towards specific cellular locations, cross-linking microtubules and mediating the interactions of microtubules with other proteins in the cell [1].

Within the cell, MAPs bind directly to the tubulin dimers of microtubules. This binding can occur with either polymerized or depolymerized tubulin, and in most cases leads to the stabilization of microtubule structure, further encouraging polymerization. Usually, it is the C-terminal domain of the MAP that interacts with tubulin, while the N-terminal domain can bind with cellular vesicles, intermediate filaments or other microtubules. MAP-microtubule binding is regulated through MAP phosphorylation. This is accomplished through the function of the microtubule-affinity-regulating-kinase (MARK) protein. Phosphorylation of the MAP by the MARK causes the MAP to detach from any bound microtubules [2]. This detachment is usually associated with a destabilization of the microtubule causing it to fall apart. In this way the stabilization of microtubules by MAPs is regulated within the cell through phosphorylation.

Types

The numerous identified MAPs have been largely divided into two categories: Type I including MAP1 proteins and type II including MAP2, MAP4 and tau proteins.

Type I: MAP1

MAP1a (MAP1A) and MAP1b (MAP1B), which make up the MAP1 family, bind to microtubules differently than other MAPs, utilizing charged interactions [3]. While the C-terminals of these MAPs bind the microtubules, the N-terminals bind other parts of the cytoskeleton or the plasma membrane to control spacing of the microtubule within the cell. Members of the MAP1 family are found in the axons and dendrites of nerve cells [4].

Type II: MAP2, MAP4 and tau

Also found exclusively in nerve cells are the most well studied MAPs, MAP2 (MAP2) and tau (MAPT), which participate in determining the structure of different parts of nerve cells - MAP2 being found mostly in dendrites and tau in the axon. These proteins have a conserved C-terminal microtubule-binding domain and variable N-terminal domains projecting outwards probably interacting with other proteins. MAP2 and tau stabilize microtubules, and thus shift the reaction kinetics in favor of addition of new subunits, accelerating microtubule growth. Both MAP2 and tau have been shown to stabilize microtubules by binding to the outer surface of the microtubule protofilaments [5],[6]. A single study has been suggested that MAP2 and tau bind on the inner microtubule surface on same site in tubulin monomers as the drug Taxol which is used in treating cancer [7]. However, the evidence is in favor of MAP2 and tau binding to the outer microtubule surface and this study has not been confirmed. MAP2 binds in a cooperative manner with many MAP2 proteins binding a single microtubule to promote stabilization. Tau as well helps to stabilize microtubules, however it forms the additional, important function of facilitating bundling of microtubules within the nerve cell [8].

The function of tau has been linked to the neurological condition known as Alzheimer's Disease. In the nervous tissue of Alzheimer's patients tau forms abnormal aggregates. This aggregated tau is often severely modified, most commonly through hyperphosphorylation. As described above, phosphorylation of MAPs causes them to detach from microtubules. Thus, the hyperphosphorylation of tau leads to massive detachment which in turn greatly reduces the stability of microtubules in nerve cells [9]. This increase in microtubule instability may be one of the main causes of the symptoms of Alzheimer's Disease.

In contrast to the MAPs described above, MAP4 (MAP4) is not confined to just nerve cells, but rather can be found in nearly all types of cells. Like MAP2 and tau, MAP4 is responsible for stabilization of microtubules [10]. MAP4 has also been linked to the process of cell division [11].

Other MAPs, and naming issues

Another MAP whose function has been investigated during cell division is known as XMAP215 (the "X" stands for Xenopus). XMAP215 has generally been linked to microtubule stabilization. During mitosis the dynamic instability of microtubules has been observed to rise approximately tenfold. This is partly due to phosphorylation of XMAP215, which makes catastrophes (rapid depolymerization of microtubules) more likely [12]. In this way the phosphorylation of MAPs plays a role in mitosis.

There are many other proteins which affect microtubule behavior, such as catastrophin, which destabilizes microtubules, katanin, which severs them, cytoplasmic linker associated proteins (CLASPs), which facilitate interaction with the plasma membrane, and a number of motor proteins that transport vesicles along them. Certain motor proteins were originally designated as MAPs before it was found that they utilized ATP hydrolysis to transport cargo. In general, all these proteins are not considered "MAPs" because they do not bind directly to tubulin monomers, a defining characteristic of MAPs [13]. MAPs bind directly to microtubules to stabilize or destabilize them and link them to various cellular components including other microtubules.

See also

References

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • microtubule-associated protein — (MAP) any of a large family of proteins that regulate microtubule assembly and structure; the number and kinds of MAPs vary by cell type and are determined genetically …   Medical dictionary

  • Huntingtin-associated protein 1 — (neuroan 1) Identifiers Symbol HAP1 Alt. symbols HAP2 Entrez 9001 …   Wikipedia

  • Protein (disambiguation) — Protein is a class of biomolecules composed of amino acid chains.Protein may also refer to:Biochemistry* Antifreeze protein, class of polypeptides produced by certain fish, vertebrates, plants, fungi and bacteria * Conjugated protein, protein… …   Wikipedia

  • Protein kinase N1 — Protein kinase N1, also known as PKN1, is a human gene.cite web | title = Entrez Gene: PKN1 protein kinase N1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene Cmd=ShowDetailView TermToSearch=5585| accessdate = ] PBB Summary section title …   Wikipedia

  • Microtubule — Space filling model of a microtubule segment derived from cryo electron microscopy. The protofilaments are seen running along the axis of the segment. The microtubule (+) end is towards the top of the image.[1] Microtubules are a component of the …   Wikipedia

  • Protein kinase — A protein kinase is a kinase enzyme that modifies other proteins by chemically adding phosphate groups to them (phosphorylation). This class of protein may further be separated into subsets as in the case of protein kinase C PKC alpha, PKC beta,… …   Wikipedia

  • Protein — A large molecule composed of one or more chains of amino acids in a specific order determined by the base sequence of nucleotides in the DNA coding for the protein. Proteins are required for the structure, function, and regulation of the body s… …   Medical dictionary

  • Microtubule nucleation — tubulin, gamma Identifiers Symbol TUBG1 Alt. symbols TUBG Entrez 7283 …   Wikipedia

  • Protein domain — Pyruvate kinase, a protein from three domains (PDB 1pkn) A protein domain is a part of protein sequence and structure that can evolve, function, and exist independently of the rest of the protein chain. Each domain forms a compact three… …   Wikipedia

  • Tau protein — Tau proteins are microtubule associated proteins that are abundant in neurons in the central nervous system and are less common elsewhere. They were discovered in 1975 in Marc Kirschner s laboratory at Princeton University… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.