Rocket propellant


Rocket propellant

Rocket propellant is mass that is stored, usually in some form of propellant tank, prior to being used as the propulsive mass that is ejected from a rocket engine in the form of a fluid jet to produce thrust.

Chemical rocket propellants are most commonly used, which undergo exothermic chemical reactions which produce hot gas which is used by a rocket for propulsive purposes.

Overview

and atmospheric pressure on the outside of the nozzle.

The maximum velocity that a rocket can attain in the absence of any external forces is primarily a function of its mass ratio and its "exhaust velocity". The relationship is described by the "rocket equation": V_f = V_e ln(M_0/M_f). The mass ratio is just a way to express what proportion of the rocket is fuel when it starts accelerating. Typically, a single-stage rocket might have a mass fraction of 90% propellant, which is a mass ratio of 1/(1-0.9) = 10. The exhaust velocity is often reported as "specific impulse".

The first stage will usually use high-density (low volume) propellants to reduce the area exposed to atmospheric drag and because of the lighter tankage and higher thrust/weight ratios. Thus, the Apollo-Saturn V first stage used kerosene-liquid oxygen rather than the liquid hydrogen-liquid oxygen used on the upper stages (hydrogen is highly energetic per kilogram, but not per cubic metre). Similarly, the Space Shuttle uses high-thrust, high-density SRBs for its lift-off with the liquid hydrogen-liquid oxygen SSMEs used partly for lift-off but primarily for orbital insertion.

Chemical propellants

There are three main types of propellants: solid, liquid, and hybrid.

Solid propellants

The earliest rockets were created hundreds of years ago by the Chinese, and were used primarily for fireworks displays and as weapons. They were fueled with black powder, a type of gunpowder consisting of a mixture of charcoal, sulfur and potassium nitrate (saltpeter). Rocket propellant technology did not advance until the end of the 19th century, by which time smokeless powder had been developed, originally for use in firearms and artillery pieces. Smokeless powders and related compounds have seen use as double-base propellants.

Solid propellants (and almost all rocket propellants) consist of an oxidizer and a fuel. In the case of gunpowder, the fuel is charcoal, the oxidizer is potassium nitrate, and sulfur serves as a catalyst. (Note: sulfur is not a true catalyst in gunpowder as it is consumed to a great extent into a variety of reaction products such as K2S. The sulfur acts mainly as a sensitizer lowering threshold of ignition.) During the 1950s and 60s researchers in the United States developed what is now the standard high-energy solid rocket fuel. The mixture is primarily ammonium perchlorate powder (an oxidizer), combined with fine aluminium powder (a fuel), held together in a base of PBAN or HTPB (rubber-like fuels). The mixture is formed as a liquid, and then cast into the correct shape and cured into a rubbery solid.Solid fueled rockets are much easier to store and handle than liquid fueled rockets, which makes them ideal for military applications. In the 1970s and 1980s the U.S. switched entirely to solid-fuelled ICBMs: the LGM-30 Minuteman and LG-118A Peacekeeper (MX). In the 1980s and 1990s, the USSR/Russia also deployed solid-fuelled ICBMs (RT-23, RT-2PM, and RT-2UTTH), but retains two liquid-fuelled ICBMs (R-36 and UR-100N). All solid-fuelled ICBMs on both sides have three initial solid stages and a precision maneuverable liquid-fuelled [http://www.boeing.com/defense-space/space/propul/peacekpr.html bus] used to fine tune the trajectory of the reentry vehicle.

Their simplicity also makes solid rockets a good choice whenever large amounts of thrust are needed and cost is an issue. The Space Shuttle and many other orbital launch vehicles use solid fuelled rockets in their first stages (solid rocket boosters) for this reason.

However, solid rockets have a number of disadvantages relative to liquid fuel rockets. Solid rockets have a lower specific impulse than liquid fueled rockets. It is also difficult to build a large mass ratio solid rocket because almost the entire rocket is the combustion chamber, and must be built to withstand the high combustion pressures. If a solid rocket is used to go all the way to orbit, the payload fraction is very small. (For example, the Orbital Sciences Pegasus rocket is an air-launched three-stage solid rocket orbital booster. Launch mass is 23,130 kg, low earth orbit payload is 443 kg, for a payload fraction of 1.9%. Compare to a Delta IV Medium, 249,500 kg, payload 8600 kg, payload fraction 3.4% without air-launch assistance.)

A drawback to solid rockets is that they cannot be throttled in real time, although a predesigned thrust schedule can be built into the grain during manufacture.

Solid rockets can often be shut down before they run out of fuel. Essentially, the rocket is vented or an extinguishant injected so as to terminate the combustion process. In some cases termination destroys the rocket, and then this is typically only done by a Range Safety Officer if the rocket goes awry. The third stages of the Minuteman and MX rockets have precision shutdown ports which, when opened, reduce the chamber pressure so abruptly that the interior flame is blown out. This allows a more precise trajectory which improves targeting accuracy.

Finally, casting very large single-grain rocket motors has proved to be a very tricky business. Defects in the grain can cause explosions during the burn, and these explosions can increase the burning propellant surface enough to cause a runaway pressure increase, until the case fails.

Liquid propellants

Liquid fueled rockets have better specific impulse than solid rockets and are capable of being throttled, shut down, and restarted. Only the combustion chamber of a liquid fueled rocket needs to withstand combustion pressures and temperatures. On vehicles employing turbopumps, the fuel tanks carry very much less pressure and thus can be built far more lightly, permitting a larger mass ratio. For these reasons, most orbital launch vehicles and all first- and second-generation ICBMs use liquid fuels for most of their velocity gain.

The primary performance advantage of liquid propellants is the oxidizer. Several practical liquid oxidizers (liquid oxygen, nitrogen tetroxide, and hydrogen peroxide) are available which have much better specific impulse than ammonium perchlorate when paired with comparable fuels.

Most liquid propellants are also cheaper than solid propellants. For orbital launchers, the cost savings do not, and historically have not mattered; the cost of fuel is a very small portion of the overall cost of the rocket, even in the case of solid fuel.

The main difficulties with liquid propellants are also with the oxidizers. These are generally at least moderately difficult to store and handle due to their high reactivity with common materials, may have extreme toxicity (nitric acids), moderately cryogenic (liquid oxygen), or both (liquid fluorine, FLOX- a fluorine/LOX mix). Several exotic oxidizers have been proposed: liquid ozone (O3), ClF3, and ClF5, all of which are unstable, energetic, and toxic.

Liquid fuelled rockets also require potentially troublesome valves and seals and thermally stressed combustion chambers, which increase the cost of the rocket. Many employ specially designed turbopumps which raise the cost enormously due to difficult fluid flow patterns that exist within the casings.

Though all the early rocket theorists proposed liquid hydrogen and liquid oxygen as propellants, the first liquid-fuelled rocket, launched by Robert Goddard on March 16, 1926, used gasoline and liquid oxygen. Liquid hydrogen was first used by the engines designed by Pratt and Whitney for the Lockheed CL-400 Suntan reconnaissance aircraft in the mid-1950s. In the mid-1960s, the Centaur and Saturn upper stages were both using liquid hydrogen and liquid oxygen.

The highest specific impulse chemistry ever test-fired in a rocket engine was lithium and fluorine, with hydrogen added to improve the exhaust thermodynamics (making this a tripropellant) [ARBIT, H. A., CLAPP, S. D., DICKERSON, R. A., NAGAI, C. K., [http://www.aiaa.org/content.cfm?pageid=406&gTable=mtgpaper&gID=40999 Combustion characteristics of the fluorine-lithium/hydrogen tripropellant combination.] AMERICAN INST OF AERONAUTICS AND ASTRONAUTICS, PROPULSION JOINT SPECIALIST CONFERENCE, 4TH, CLEVELAND, OHIO, Jun 10-14, 1968. ] . The combination delivered 542 seconds (5.32 kN·s/kg, 5320 m/s) specific impulse in a vacuum. The impracticality of this chemistry highlights why exotic propellants are not actually used: to make all three components liquids, the hydrogen must be kept below -252 °C (just 21 K) and the lithium must be kept above 180 °C (453 K). Lithium and fluorine are both extremely corrosive, lithium ignites on contact with air, fluorine ignites on contact with most fuels, and hydrogen, while not hypergolic, is an explosive hazard. Fluorine and the hydrogen fluoride (HF) in the exhaust are very toxic, which damages the environment, makes work around the launch pad difficult, and makes getting a launch license that much more difficult. The rocket exhaust is also ionized, which would interfere with radio communication with the rocket.

The common liquid propellant combinations in use today:

* LOX and kerosene (RP-1). Used for the lower stages of most Russian and Chinese boosters, the first stages of the Saturn V and Atlas V, and all stages of the developmental Falcon 1 and Falcon 9. Very similar to Robert Goddard's first rocket. This combination is widely regarded as the most practical for civilian orbital launchers.

* LOX and liquid hydrogen, used in the Space Shuttle, the Centaur upper stage, the newer Delta IV rocket, the H-IIA rocket, and most stages of the European Ariane rockets.

* Nitrogen tetroxide (N2O4) and hydrazine (N2H4), MMH, or UDMH. Used in military, orbital and deep space rockets, because both liquids are storable for long periods at reasonable temperatures and pressures. This combination is hypergolic, making for attractively simple ignition sequences. The major inconvenience is that these propellants are highly toxic, hence they require careful handling. Hydrazine also decomposes energetically to nitrogen, hydrogen, and ammonia, making it a fairly good monopropellant.

Gas propellants

A gas propellant usually involves some sort of compressed gas. However, due to the low density and high weight of the pressure vessel, gases see little current use.

Hybrid propellants

A hybrid rocket usually has a solid fuel and a liquid or gas oxidizer. The fluid oxidizer can make it possible to throttle and restart the motor just like a liquid fuelled rocket. Hybrid rockets are also cleaner than solid rockets because practical high-performance solid-phase oxidizers all contain chlorine, versus the more benign liquid oxygen or nitrous oxide used in hybrids. Because just one propellant is a fluid, hybrids are simpler than liquid rockets.

Hybrid motors suffer two major drawbacks. The first, shared with solid rocket motors, is that the casing around the fuel grain must be built to withstand full combustion pressure and often extreme temperatures as well. However, modern composite structures handle this problem well, and when used with nitrous oxide or hydrogen peroxide relatively small percentage of fuel is needed anyway, so the combustion chamber is not especially large.

The primary remaining difficulty with hybrids is with mixing the propellants during the combustion process. In solid propellants, the oxidizer and fuel are mixed in a factory in carefully controlled conditions. Liquid propellants are generally mixed by the injector at the top of the combustion chamber, which directs many small swift-moving streams of fuel and oxidizer into one another. Liquid fuelled rocket injector design has been studied at great length and still resists reliable performance prediction. In a hybrid motor, the mixing happens at the melting or evaporating surface of the fuel. The mixing is not a well-controlled process and generally quite a lot of propellant is left unburnedFact|date=July 2007, which limits the efficiency and thus the exhaust velocity of the motor. Additionally, as the burn continues, the hole down the center of the grain (the 'port') widens and the mixture ratio tends to become more oxidiser rich.

There has been much less development of hybrid motors than solid and liquid motors. For military use, ease of handling and maintenance have driven the use of solid rockets. For orbital work, liquid fuels are more efficient than hybrids and most development has concentrated there. There has recently been an increase in hybrid motor development for nonmilitary suborbital work:

* The Reaction Research Society (RRS), although known primarily for their work with liquid rocket propulsion, has a long history of research and development with hybrid rocket propulsion.

* Several universities have recently experimented with hybrid rockets. Brigham Young University, the University of Utah and Utah State University launched a student-designed rocket called Unity IV in 1995 which burned the solid fuel hydroxy-terminated polybutadiene (HTPB) with an oxidizer of gaseous oxygen, and in 2003 launched a larger version which burned HTPB with nitrous oxide.

* Portland State University also launched several hybrid rockets in the early 2000's.

* The Rochester Institute of Technology is currently creating a HTPB hybrid rocket to launch small payloads into space and to several near Earth objects. Its first launch is scheduled for Summer 2007. http://meteor.rit.edu

* Scaled Composites SpaceShipOne, the first private manned spacecraft, is powered by a hybrid rocket burning HTPB with nitrous oxide. The hybrid rocket engine was manufactured by SpaceDev. SpaceDev partially based its motors on experimental data collected from the testing of AMROC's (American Rocket Company) motors at NASA's Stennis Space Center's E1 test stand. Motors ranging from as small as 1000 lbf (4.4 kN) to as large as 250,000 lbf (1.1 MN) thrust were successfully tested. SpaceDev purchased AMROCs assets after the company was shut down for lack of funding.

Inert propellants

Some rocket designs have their propellants obtain their energy from non chemical or even external sources. For example water rockets use the compressed gas, typically air, to force the water out of the rocket.

Solar thermal rockets and Nuclear thermal rockets typically propose to use liquid hydrogen for an "I"sp (Specific Impulse) of around 600-900 seconds, or in some cases water that is exhausted as steam for an "I"sp of about 190 seconds.

Additionally for low performance requirements such as attitude jets, inert gases such as nitrogen have been employed.

Mixture ratio

The theoretical exhaust velocity of a given propellant chemistry is afunction of the energy released per unit of propellant mass (specificenergy). Unburned fuel or oxidizer drags down the specific energy.Surprisingly, most rockets run fuel-rich.

The usual explanation for fuel-rich mixtures is that fuel-richmixtures have lower molecular weight exhaust, which by reducingM supposedly increases the ratio frac{sqrt{T_c{M}which is approximately equal to the theoretical exhaust velocity.This explanation, though found in some textbooks, is wrong. Fuel-richmixtures actually have lower theoretical exhaust velocities, becausesqrt{T_c} decreases as fast or faster than M.

The nozzle of the rocket converts the thermal energy of thepropellants into directed kinetic energy. This conversion happens ina short time, on the order of one millisecond. During the conversion, energymust transfer very quickly from the rotational and vibrational statesof the exhaust molecules into translation. Molecules with fewer atoms(like CO and H2) store less energy in vibration androtation than molecules with more atoms (like CO2 andH2O). These smaller molecules transfer more of their rotational andvibrational energy to translation energy than larger molecules, andthe resulting improvement in nozzle efficiency is large enoughthat real rocket engines improve their actual exhaustvelocity by running rich mixtures with somewhat lower theoreticalexhaust velocities.

The effect of exhaust molecular weight on nozzle efficiency is mostimportant for nozzles operating near sea level. High expansionrockets operating in a vacuum see a much smaller effect, and so arerun less rich. The Saturn-II stage (a LOX/LH2 rocket)varied its mixture ratio during flight to optimize performance.

LOX/hydrocarbon rockets are run only somewhat rich (O/F mass ratio of3 rather than stoichiometric of 3.4 to 4), because the energy releaseper unit mass drops off quickly as the mixture ratio deviates fromstoichiometric. LOX/LH2 rockets are run very rich (O/F massratio of 4 rather than stoichiometric 8) because hydrogen is so lightthat the energy release per unit mass of propellant drops very slowlywith extra hydrogen. In fact, LOX/LH2 rockets aregenerally limited in how rich they run by the performance penalty ofthe mass of the extra hydrogen tankage, rather than the mass of thehydrogen itself.

Another reason for running rich is that off-stoichiometric mixturesburn cooler than stoichiometric mixtures, which makes engine coolingeasier. And as most engines are made of metal or carbon, hotoxidizer-rich exhaust is extremely corrosive, where fuel-rich exhaustis less so. American engines have all been fuel-rich. Some Sovietengines have been oxidizer-rich.

Additionally, there is a difference between mixture ratios for optimum "I"sp and optimum thrust.During launch, shortly after takeoff, high thrust is at a premium.This can be achieved at some temporary reduction of "I"sp by increasing the oxidiser ratioinitially, and then transitioning to more fuel-rich mixtures. Since engine size is typically scaled for takeoff thrustthis permits reduction of the weight of rocket engine, pipes and pumpsand the extra propellant use can be more than compensated by increases of acceleration towardsthe end of the burn by having a reduced dry mass.

Propellant density

Although liquid hydrogen gives a high "I"sp, its low density is a significant disadvantage: hydrogen occupies about 7x more volume per kilogram than dense fuels such as kerosene. This not only penalises the tankage, but also the pipes and fuel pumps leading from the tank, which need to be 7x bigger and heavier. (The oxidiser side of the engine and tankage is of course unaffected.) This makes the vehicle's dry mass much higher, so the use of liquid hydrogen is not such a big win as might be expected. Indeed, some dense hydrocarbon/LOX propellant combinations have higher performance when the dry mass penalties are included.

Due to lower "I"sp, dense propellant launch vehicles have a higher takeoff mass, but this does not mean a proportionately high cost; on the contrary, the vehicle may well end up cheaper. Liquid hydrogen is quite an expensive fuel to produce and store, and causes many practical difficulties with design and manufacture of the vehicle.

Because of the higher overall weight, a dense-fuelled launch vehicle necessarily requires higher takeoff thrust, but it carries this thrust capability all the way to orbit. This, in combination with the better thrust/weight ratios, means that dense-fuelled vehicles reach orbit earlier, thereby minimizing losses due to gravity drag. Thus, the effective delta-v requirement for these vehicles are reduced.

However, liquid hydrogen does give clear advantages when the overall mass needs to be minimised; for example the Saturn V vehicle used it on the upper stages; this reduced weight meant that the dense-fuelled first stage could be made proportionately smaller, saving quite a bit of money.

References

ee also

* Timeline of hydrogen technologies
*
* Comparison: Aviation fuel
* Nuclear propulsion
* Ion thruster

External links

* [http://www-pao.ksc.nasa.gov/kscpao/nasafact/count2.htm NASA page on propellants]
* [http://www.braeunig.us/space/propel.htm Rocket Propellants] (from "Rocket & Space Technology")
* [http://www.dfrc.nasa.gov/DTRS/1999/PDF/H-2330.pdf History of solid rocket fuels]
* [http://www.astronautix.com/props/index.htm Detailed list of rocket fuels, practical and theoretical]
* [http://3quarksdaily.blogs.com/3quarksdaily/2005/08/monday_musing_r.html Rocket Man] Short essay by S. Abbas Raza about development of solid rocket fuel at [http://3quarksdaily "3 Quarks Daily"]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • rocket propellant — raketinis kuras statusas T sritis chemija apibrėžtis Raketiniuose varikliuose naudojamas medžiagų mišinys. atitikmenys: angl. propellant; rocket propellant rus. ракетное топливо …   Chemijos terminų aiškinamasis žodynas

  • rocket propellant — raketinis kuras statusas T sritis Gynyba apibrėžtis Medžiagos arba jų mišiniai, kurie, būdami energijos šaltiniu ir darbiniu kūnu, sudaro raketinio variklio reaktyvinę trauką. Raketinis kuras būna kietasis, skystasis ir mišrusis. T. p. gali būti… …   Artilerijos terminų žodynas

  • rocket propellant — raketinis kuras statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Medžiagos arba jų mišiniai, kurie, būdami energijos šaltiniu ir darbiniu kūnu, sudaro raketos variklio reaktyvinę trauką. Raketinis kuras būna kietasis, skystasis ir… …   Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

  • rocket propellant — noun an explosive charge that propels a rocket • Syn: ↑rocket fuel, ↑rocket propellent • Hypernyms: ↑charge, ↑burster, ↑bursting charge, ↑explosive charge, ↑propellant, ↑ …   Useful english dictionary

  • solid rocket propellant — kietasis raketinis kuras statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Kietasis oksidatoriaus ir degalų mišinys. Privalumai: tinka ilgai laikyti užtaisytas raketas, didelis tankis; trūkumai: degimo valdymo sunkumas ir palyginti… …   Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

  • Rocket — This article is about vehicles powered by rocket engines. For other uses, see Rocket (disambiguation). A Soyuz U, at Baikonur Site 1/5 A rocket is a missile, spacecraft, aircraft or other vehicle which obtains thrust from a rocket engi …   Wikipedia

  • Rocket engine — RS 68 being tested at NASA s Stennis Space Center. The nearly transparent exhaust is due to this engine s exhaust being mostly superheated steam (water vapor from its propellants, hydrogen and oxygen) …   Wikipedia

  • Propellant tank — A propellant tank is a container which is part of a vehicle, where propellant is stored prior to use. Propellant tanks vary in construction, and may be an fuel tank in the case of many aircraft.In rocket vehicles, propellant tanks are fairly… …   Wikipedia

  • rocket fuel — noun an explosive charge that propels a rocket • Syn: ↑rocket propellant, ↑rocket propellent • Hypernyms: ↑charge, ↑burster, ↑bursting charge, ↑explosive charge, ↑propellant, ↑ …   Useful english dictionary

  • rocket propellent — noun an explosive charge that propels a rocket • Syn: ↑rocket fuel, ↑rocket propellant • Hypernyms: ↑charge, ↑burster, ↑bursting charge, ↑explosive charge, ↑propellant, ↑ …   Useful english dictionary


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.