Independence-friendly logic

Independence-friendly logic

Independence-friendly logic (IF logic), proposed by Jaakko Hintikka and Gabriel Sandu, aims at being a more natural and intuitive alternative to classical first-order logic (FOL). IF logic is characterized by branching quantifiers. It is more expressive than FOL because it allows one to express independence relations between quantified variables.

For example, the formula ∀a ∀b ∃c/b ∃d/a φ(a,b,c,d) ("x/y" should be read as "x independent of y") cannot be expressed in FOL. This is because c depends "only" on a and d depends "only" on b. First-order logic cannot express these independences by any linear reordering of the quantifiers.


Since Tarskian semantics does not allow indeterminate truth values, it cannot be used for IF logic. Hintikka further argues that the standard semantics of FOL cannot accommodate IF logic because the principle of compositionality fails in the latter. Wilfrid Hodges (1997) gives a compositional semantics for it in part by having the truth clauses for IF formulas quantify over sets of assignments rather than just assignments (as the usual truth clauses do).

The game-theoretic semantics for FOL treats a FOL formula as a game of perfect information, whose players are Verifier and Falsifier. The same holds for the standard semantics of IF logic, except that the games are of imperfect information.

Independence relations between the quantified variables are modelled in the game tree as indistinguishability relations between game states with respect to a certain player. In other words, the players are not certain where they are in the tree (this ignorance simulates simultaneous play). The formula is evaluated as true if there Verifier has a winning strategy, false if Falsifier has a winning strategy, and indeterminate otherwise.

A winning strategy is informally defined as a strategy that is guaranteed to win the game, regardless of how the other players play. It can be given a completely rigorous, formal definition.


Feferman (2006) cites a theorem of Väänänen which states that "the general question of validity of IF sentences is recursively isomorphic to that for validity in full second-order logic". He argues (contra Hintikka) that while satisfiability might be a first-order matter, the question of whether there is a winning strategy for Verifier over all structures in general "lands us squarely in "full second order logic" (emphasis Feferman's).


*Solomon Feferman, "What kind of logic is "Independence Friendly" logic?", in "The Philosophy of Jaakko Hintikka" (Randall E. Auxier and Lewis Edwin Hahn, eds.); Library of Living Philosophers vol. 30, Open Court (2006), 453-469. []
*Daniel Kolak, On Hintikka, Belmont: Wadsworth 2001 ISBN 0-534-58389-X
*Daniel Kolak and John Symons, " [ The Results are In: The Scope and Import of Hintikka’s Philosophy] ," Quantifiers, Questions and Quantum Physics, in Daniel Kolak and John Symons, eds., Quantifiers, Questions, and Quantum Physics, Dordrecht, The Netherlands: Springer 2004 pp. 205-268 ISBN 1-4020-3210-2
*Matti Eklund and Daniel Kolak, “Is Hintikka’s Logic First Order?” Synthese: An International Journal for the Methodology, Epistemology, and Philosophy of Science, 131(3): 371-388 June 2002
*Jouko Väänänen, 2007, ' [ Dependence Logic -- A New Approach to Independence Friendly Logic] ', ISBN-13: 9780521876599
*Wilfrid Hodges, 1997, 'Compositional semantics for a language of imperfect information'. "Journal of the IGPL" 5: 539–563.
*Wilfrid Hodges, 2004. ' [ Logic and Games] '. Stanford Encyclopedia of Philosophy.
*Janssen, Theo M. V. "Independent choices and the interpretation of IF logic."
*Dag Westerståhl, 2005. ' [ Generalized Quantifiers] '. Stanford Encyclopedia of Philosophy.

External links

* [ Planet Math article on IF logic] .

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Dependence logic — is a logical formalism, created by Jouko Väänänen[1], which adds dependence atoms to the language of first order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is… …   Wikipedia

  • Controversy over Kosovo independence — The unilateral declaration of independence of Kosovo from Serbia has generated controversy in international politics. For a start, it has led to deep divisions between those states that recognise the declaration and those that do not. (See… …   Wikipedia

  • Game semantics — (German: dialogische Logik) is an approach to formal semantics that grounds the concepts of truth or validity on game theoretic concepts, such as the existence of a winning strategy for a player, somewhat resembling Socratic dialogues or medieval …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Branching quantifier — In logic a branching quantifier is a partial ordering :langle Qx 1dots Qx n angle of quantifiers for Q∈{∀,∃}. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable x bound by a quantifier Q depends on the… …   Wikipedia

  • Jaakko Hintikka — (born January 12 1929) is a Finnish philosopher and logician.Hintikka was born in Vantaa. After teaching for a number of years at Florida State University, Stanford, University of Helsinki, and the Academy of Finland, he is currently Professor of …   Wikipedia

  • Jaakko Hintikka — en el 2006. Jaakko Hintikka (12 de enero de 1929) es un filósofo y lógico finlandés. Hintikka nació en Vantaa. Luego de enseñar en Florida State University, Stanford, Universidad de Helsinki, y la Academia de Finlandia, actualmente Hintikka es… …   Wikipedia Español

  • Daniel Kolak — (b. 1955 in Zagreb, Croatia) is a Croatian American philosopher who works primarily in philosophy of mind, personal identity, cognitive science, philosophy of science, philosophy of mathematics, philosophy of logic, philosophy of religion, and… …   Wikipedia

  • international relations — a branch of political science dealing with the relations between nations. [1970 75] * * * Study of the relations of states with each other and with international organizations and certain subnational entities (e.g., bureaucracies and political… …   Universalium

  • education — /ej oo kay sheuhn/, n. 1. the act or process of imparting or acquiring general knowledge, developing the powers of reasoning and judgment, and generally of preparing oneself or others intellectually for mature life. 2. the act or process of… …   Universalium