Technology Across the Curriculum


Technology Across the Curriculum

The Technology Across the Curriculum program at George Mason University is an innovative, award-winning program that fosters the integration of technology across the liberal arts curriculum, in order to foster information technology skills among students enrolled at GMU.

History and Structure of the Program

The [http://tac.gmu.edu Technology Across the Curriculum] (TAC) program began in 1998 with funding from the governor and legislature of Virginia, along with additional funding from GMU itself. [http://www.educause.edu/ir/library/pdf/EQM0041.pdf] After a series of consultations with faculty members about the technology skills that students need to succeed in majors and with local businesses and corporations about the skills they expect from graduates (in addition to discussions with students and with technology leaders), the creators of the program, Anne Scrivener Agee and Dee Ann Holisky developed a series of IT goals that reflect the skills required by students to flourish in college and upon graduation. The goals, revised in fall 2001, are described in detail [http://tac.gmu.edu/goals/tenitgoals.html here] . Thy are broken down into "essential" skills that all students should have (and that might be integrated into lower-division courses) and the "advanced" skills that might be relevant only to particular majors or to upper-level courses. [http://www.educause.edu/ir/library/pdf/pub7006i.pdf. See p. 101 in particular.] Those skills in brief are:

#Students will be able to engage in electronic collaboration.
#Students will be able to use and create structured electronic documents.
#Students will be able to do technology-enhanced presentations.
#Students will be able to use electronic tools for research and evaluation.
#Students will be able to use databases to manage information.
#Students will be able to use spreadsheets to manage information.
#Students will be able to use electronic tools for analyzing quantitative and qualitative data.
#Students will be able to use graphical and multimedia representation technologies.
#Students will be familiar with major legal, ethical, privacy and security issues in information technology.
#Students will have a working knowledge of hardware and software.

Having articulated those goals, the TAC Program solicited faculty course and program development proposals that would incorporate one or more of the goals into particular course assignments, so that students would develop the skills associated with the various goals.

You can find a history of the TAC-funded proposals on the [http://tac.gmu.edu/projectmain.php TAC Project Summary Page] . Over most of its history, the TAC program has funded proposals from faculty members modifying individual courses or a small group of courses to incorporate several of the skills listed among the [http://tac.gmu.edu/goals/tenitgoals.html TAC IT Goals] . The program has also funded department-wide proposals, in which a department decides on a series of courses that will advance student technology skills in a deliberative way, as the student progresses through the program or major. Individual proposals often involved a one-year funding cycle, in which a faculty member (or a few faculty members) would design a new assignment that incorporated student technology skills, implement it during one or two semesters, and write a report back to the TAC program assessing the success of the project. Department-wide proposals often extended over multiple years, as a group of faculty members incorporated new assignments into a series of courses, providing interim and annual assessment reports for each year that the department received TAC funding. A good example of a department-wide project was the [http://tac.gmu.edu/projectview.php?Project=0102ncc01 Technology in the NCC Curriculum project] , in which several faculty in the New Century College developed a series of technology-based assignments, trained other NCC faculty in the use of those assignments, and described those assignments in a [http://classweb.gmu.edu/nccassess/aahe/ detailed online report] . An example of a very ambitious, "individual" project is the [http://tac.gmu.edu/projectview.php?Project=0102hist02 U.S. History Online] project, in which two faculty members developed a series of online modules for a particular course, teaching students how to think like historians and how to use various online sources and tools to interpret historical events and to analyze historical data. Individual TAC projects more typically involve a single assignment with clear, technology-based learning goals, advancing one or more of the 10 TAC IT goals.

Over the many years of the program's existence, it has benefited from the direction of Dee Ann Holisky, who as Associate Dean and Senior Associate Dean of the College of Arts and Sciences (now the College of Humanities and Social Sciences) has been responsible for overarching curriculum development for the college. The TAC Program is thus related to a general process of curriculum redesign, in which departments and faculty members rethink their course and program requirements to fulfill the college's mission of preparing students for their working lives and for citizenship in a complex, technology-rich society. Several TAC Coordinators have guided the program over its existence, including Jim Sparrow, Susan Warshauer, Leslie Harris, Beth Secrist, and Glenda Morgan.

Recognition and Awards

In June 2000, the TAC Program was selected as one of 20 international finalists in the Education Category of the [http://www.stockholmchallenge.se/ Stockholm Challenge] . [http://www.stockholmchallenge.se/data. Search on Category=Education, Year=2000, and Status=Finalists, Winners.] . In October 2000, the TAC Program received the Governor's Technology Award in the Higher Education category. [ [http://www.gmu.edu/news/gazette/0011/tacaward.html November 2000 - Governor Honors TAC Program with Technology Award ] ] In October 2001, the program received the annual [http://www.educause.edu/2001/1361 Educause Systemic Progress in Teaching and Learning Award] . The Educause Award articulates in a very clear way the essential elements of the TAC program:

::This exemplary program advances deliberate, institution-wide innovation while remaining grounded in both student needs and student achievement. It features a number of elements that would be useful to other institutions and state systems, including:

::* a systematic process through which faculty identify core basic and advanced skills;::* a grid matching these skills with programmatic curricular change;::* a student-support mechanism (Student Technology Assistance and Resources) that provides students with basic instruction to prepare them for more advanced technical assignments;::* a faculty-support mechanism (Instructional Resource Center) to help with redesign of courses, including a proposal process that reinforces explicit institutional needs;::* a budget process that matches the priorities articulated in the TAC program;::* solid assessment mechanisms. [ [http://www.educause.edu/2001/1361 Systemic Progress in Teaching and Learning 2001 Award Winners | Professional Development | EDUCAUSE ] ]

Reasons for Success

The summary of the TAC Program by the Educause Award committee gives a good sense of what makes the program uniquely effective. Two key words in that summary are "systematic" and "programmatic." The TAC Program is "systematic" in part because of the 10 overarching IT Goals. Those goals set up an ambitious range of skills for students to develop over their four years at GMU. When faculty members submit TAC proposals, the faculty members indicate the goals that those proposals are intended to satisfy. By means of the [http://tac.gmu.edu/grid/index.html IT Grids] and a project database, the TAC program tracks how many courses satisfy each of the 10 goals. The program also sets its own priorities for each funding cycle, choosing to concentrate on different goals over time based on the goals that need the most attention or that are most appropriate for that funding year. The overarching strategy is to integrate as many of those 10 skills into the curriculum over time as possible, so that by the time a student graduates from the university, s/he will have not only a broad-based liberal arts education, but also a good grounding in the technology skills needed for future success.

Another key element of TAC's "programmatic" nature is the emphasis on [http://tac.gmu.edu/impact/index.php impact] . The program has attempted over the years to gauge the impact it has had on the undergraduate curriculum and to keep track of the number of departments, courses, faculty, and students who are in some way affected by the program itself. The faculty members and departments are those who have been involved in TAC projects, and the students have taken courses that incorporate assignments advancing student technology skills as a result of TAC funding. The impact of a project can also influence whether the project receives funding, since one of the goals of the program is to be as comprehensive as possible. When a course that is a university requirement incorporates a new technology assignment (or assignments) as part of the TAC program, then almost every student at the university will complete that assignment, and those students will gain the technology skills inherent to the assignment. For example, History 100 (Western Civilization) is a required course at GMU, and all students who cannot place out of the course need to take it. The [http://tac.gmu.edu/projectview.php?Project=0304hist01 Western Civilization Webography project] teaches students how to evaluate Internet sources based on their Authority, Accuracy, Objectivity, Currency, Coverage, Quality, etc. [ [http://chnm.gmu.edu/webography/rubric.php Western Civilization Webography ] ] Students work collaboratively to review Web-based resources relevant to the course (and that might be useful for a later writing assignment in the course), and the students enter their review into a searchable database. Students are learning crucial skills in Information literacy, and they are also learning how information is stored in a database to make it useful for later searching and retrieval. The TAC program can then feel confident that the vast majority of students at the university have received training in those crucial skills. Similarly, if [http://tac.gmu.edu/projectview.php?Project=0304comm01 Communication 104] (Presenting with Technology) is a university or college requirement, then most students will receive training in several of the IT Skills: Electronic Collaboration, Electronic Documents, Technology-Enhanced Presentations, Electronic Research and Evaluation, and Representation Technologies. If the [http://tac.gmu.edu/projectview.php?Project=0304chem02 100-level] and [http://tac.gmu.edu/projectview.php?Project=0304chem01 200-level] chemistry courses teach students essential spreadsheet skills, then all non-science majors and science majors who take those courses will have gained those skills. The more the TAC program can influence large and required courses, and the more other departments and courses become involved in the program, the more effective TAC becomes in achieving its goal of ensuring that all students receive training in the 10 crucial IT skills that provide the foundation and structure for the program.

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • The Skegness Grammar School — Motto Murus Aeneus Conscientia Sana (A sound conscience is a wall of brass) Established 1483; 1933 at current site Type Selective Day and Boarding …   Wikipedia

  • Technology in Education (academic program) — Since 1979 the Technology in Education (TIE) program at Lesley University has been a pioneer in the field and has been highly influential, inspiring similar programs at many institutions across the country. The program s primary focus is on the… …   Wikipedia

  • Technology Integration — is a term used by educators to describe effective uses of technology by teachers and students in K 12 and university classrooms. Teachers use technology to support instruction in language arts, social studies, science, math, or other content… …   Wikipedia

  • Curriculum mapping — is a procedure for reviewing the operational curriculum[1] as it is entered into an electronic database at any education setting. It is based largely on the work of Heidi Hayes Jacobs in Mapping the Big Picture: Integrating Curriculum and… …   Wikipedia

  • The Hidden Curriculum (book) — The Hidden Curriculum (1970) is a book by Benson R. Snyder, the then Dean of Institute Relations at the Massachusetts Institute of Technology. Snyder advocates the thesis that much of campus conflict and students personal anxiety is caused by a… …   Wikipedia

  • The College of William & Mary — in Virginia Established 1693[1][2] Type …   Wikipedia

  • The Asia Foundation — is a non profit, non governmental organization professing a commitment to development of a peaceful, prosperous, just, and open Asia Pacific region. It has contributed tens of millions of dollars to Asian organizations for use in programs in Asia …   Wikipedia

  • Curriculum Online — was part of the UK government s drive to get more ICT and multimedia resources in classrooms across the country. This was done primarily through the eLearning Credits(ELCs) scheme, which was operated by Curriculum Online.[1] The project was… …   Wikipedia

  • The Electric Company (1971 TV series) — The Electric Company redirects here. For the 2009 revival, see The Electric Company (2009 TV series). For other uses, see Electric company (disambiguation). The Electric Company 1971–1977 logo of The Electric Company. Format Child …   Wikipedia

  • The Eyeopener — is one of two weekly student newspapers at Ryerson University in Toronto. It has a circulation of 10,000 copies per week during the school year. The Eyeopener is published by Rye Eye Publishing Inc., owned by the students of Ryerson, as a non… …   Wikipedia