Spin-orbit interaction


Spin-orbit interaction

In quantum physics, the spin-orbit interaction (also called "spin-orbit effect" or "spin-orbit coupling") is any interaction of a particle's spin with its motion. The first and best known example of this is that spin-orbit interaction causes shifts in an electron's atomic energy levels (detectable as a splitting of spectral lines), due to electromagnetic interaction between the electron's spin and the nucleus's electric field, through which it moves. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin-orbit effects for electrons in semiconductors and other materials are explored and put to useful work.

pin-orbit interaction in atomic energy levels

In this section, we will present a relatively simple and quantitative description of the spin-orbit interaction for an electron bound to an atom, using some semiclassical electrodynamics and non-relativistic quantum mechanics, up to first order in perturbation theory. This gives results that agree well, but not perfectly, with observations. A more rigorous derivation of the same result would start with the Dirac equation, and achieving a more precise result would involve calculating small corrections from quantum electrodynamics, both beyond the scope of this article.

Energy of a magnetic moment

The energy of a magnetic moment in a magnetic field is given by:

:Delta H=-oldsymbol{mu}cdotoldsymbol{B},

where μ is the magnetic moment of the particle and B is the magnetic field it experiences.

Magnetic field

We shall deal with the magnetic field first. Although in the rest frame of the nucleus, there is no magnetic field, there "is" one in the rest frame of the electron. Ignoring for now that this frame is not inertial, we end up with the equation

:oldsymbol{B} = - {oldsymbol{v} imes oldsymbol{E}over c^2},

where v is the velocity of the electron and E the electric field it travels through. Now we know that E is radial so we can rewrite oldsymbol{E} =left | {Eover r} ight| oldsymbol{r} .Also we know that the momentum of the electron oldsymbol{p} =m_e oldsymbol{v} . Substituting this in and changing the order of the cross product gives:

:oldsymbol{B} = {oldsymbol{r} imesoldsymbol{p}over m_ec^2} left | {Eover r} ight|.

Next, we express the electric field as the gradient of the electric potential oldsymbol{E} = -oldsymbol{ abla}V. Here we make the central field approximation, that is, that the electrostatic potential is spherically symmetric, so is only a function of radius. This approximation is exact for hydrogen, and indeed hydrogen-like systems. Now we can say

:left | E ight| = {partial V over partial r}={1over e}{partial U(r) over partial r},

where U=Ve is the potential energy of the electron in the central field, and "e" is the elementary charge . Now we remember from classical mechanics that the angular momentum of a particle oldsymbol{L} = oldsymbol{r} imesoldsymbol{p}. Putting it all together we get

:oldsymbol{B} = {1over m_eec^2}{1over r}{partial U(r) over partial r} oldsymbol{L}.

It is important to note at this point that "B" is a positive number multiplied by "L", meaning that the magnetic field is parallel to the orbital angular momentum of the particle.

Magnetic Moment of the Electron

The magnetic moment of the electron is

:oldsymbol{mu} = -g_smu_Boldsymbol{S}/ hbar,

where oldsymbol{S} the spin angular momentum vector, mu_B is the Bohr magneton and g_sapprox 2 is the electron spin g-factor. Here, oldsymbol{mu} is a negative constant multiplied by the spin, so the magnetic moment is antiparallel to the spin angular momentum.

Interaction Energy

The interaction energy is:Delta H=-oldsymbol{mu}cdotoldsymbol{B}.Let's substitute in the derived expressions.

:-oldsymbol{mu}cdotoldsymbol{B} = {2mu_Bover hbar m_e e c^2}{1over r}{partial U(r) over partial r} (oldsymbol{L}cdotoldsymbol{S})

We have not, thus far, taken into account the non-inertiality of the electron rest frame; this effect is called Thomas precession and introduces a factor of frac{1}{2}. So

:-oldsymbol{mu}cdotoldsymbol{B} = {mu_Bover hbar m_e e c^2}{1over r}{partial U(r) over partial r} (oldsymbol{L}cdotoldsymbol{S})

Evaluating the energy shift

Thanks to all the above approximations, we can now evaluate the energy shift exactly in this model. In particular, we wish to find a basis that diagonalizes both "H0" (the non-perturbed Hamiltonian) and "ΔH". To find out what basis this is, we first define the total angular momentum operator

:oldsymbol{J}=oldsymbol{L}+oldsymbol{S}.

Taking the dot product of this with itself, we get

:J^2=L^2+S^2+2oldsymbol{L}cdot oldsymbol{S}

(since L and S commute), and therefore

:oldsymbol{L}cdotoldsymbol{S}= {1over 2}(oldsymbol{J}^2 - oldsymbol{L}^2 - oldsymbol{S}^2)

It can be shown that the five operators "H0", "J"², "L"², "S"², and "Jz" all commute with each other and with "ΔH". Therefore, the basis we were looking for is the simultaneous eigenbasis of these five operators (i.e., the basis where all five are diagonal). Elements of this basis have the five quantum numbers: "n" (the "principal quantum number") "j" (the "total angular momentum quantum number"), "l" (the "orbital angular momentum quantum number"), "s" (the "spin quantum number"), and "jz" (the "z"-component of total angular momentum").

To evaluate the energies, we note that

:left langle {1over r^3} ight angle = frac{2}{a^3 n^3 l(l+1)(2l+1)}

for hydrogenic wavefunctions (here a = hbar / Z alpha m_e c is the Bohr radius divided by the nuclear charge "Z"); and

:left langle oldsymbol{L}cdotoldsymbol{S} ight angle={1over 2}(langleoldsymbol{J}^2 angle - langleoldsymbol{L}^2 angle - langleoldsymbol{S}^2 angle):={hbar^2over 2}(j(j+1) - l(l+1) -s(s+1))

Final Energy Shift

We can now say

:Delta E = {etaover 2}(j(j+1) - l(l+1) -s(s+1))

where

:eta = {-mu_Bover m_eec^2}leftlangle{1over r}{partial U(r) over partial r} ight angle

For hydrogen, we can write the explicit result:eta (n,l) = {mu_0over 4pi}g_smu_B^2{1over n^3a_0^3l(l+1/2)(l+1)}

For any singly-ionized atom which has Z protons:eta (n,l) = Z^4{mu_0over 4pi}g_smu_B^2{1over n^3a_0^3l(l+1/2)(l+1)}

ee also

* Stark effect
* Zeeman effect

References

*

*


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • spin-orbit interaction — sukininė orbitinė sąveika statusas T sritis Standartizacija ir metrologija apibrėžtis Dviejų elektronų sąveika, kurios potencinė energija priklauso nuo elektronų sukinių ir jų orbitinių judesio kiekio momentų. atitikmenys: angl. spin orbit… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • spin-orbit interaction — sukinio ir orbitos sąveika statusas T sritis fizika atitikmenys: angl. spin orbit interaction vok. Spin Bahn Wechselwirkung, f rus. спин орбитальное взаимодействие, n pranc. interaction spin orbite, f …   Fizikos terminų žodynas

  • Spin Hall effect — The Spin Hall Effect (SHE) is a transport phenomenon predicted by the Russian physicists M.I. Dyakonov and V.I. Perel in 1971 [1,2] . It consist of an appearance of spin accumulation on the latteral surfaces of a current carrying sample, the… …   Wikipedia

  • Interaction spin-orbite — En mécanique quantique, l interaction spin orbite (aussi appelée effet spin orbite ou couplage spin orbite) qualifie toute interaction entre le spin d une particule et son mouvement. Le premier et le plus connu des exemples de cette interaction… …   Wikipédia en Français

  • interaction spin-orbite — sukininė orbitinė sąveika statusas T sritis Standartizacija ir metrologija apibrėžtis Dviejų elektronų sąveika, kurios potencinė energija priklauso nuo elektronų sukinių ir jų orbitinių judesio kiekio momentų. atitikmenys: angl. spin orbit… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • interaction spin-orbite — sukinio ir orbitos sąveika statusas T sritis fizika atitikmenys: angl. spin orbit interaction vok. Spin Bahn Wechselwirkung, f rus. спин орбитальное взаимодействие, n pranc. interaction spin orbite, f …   Fizikos terminų žodynas

  • Spin-Bahn-Wechselwirkung — sukininė orbitinė sąveika statusas T sritis Standartizacija ir metrologija apibrėžtis Dviejų elektronų sąveika, kurios potencinė energija priklauso nuo elektronų sukinių ir jų orbitinių judesio kiekio momentų. atitikmenys: angl. spin orbit… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Spin-Bahn-Wechselwirkung — sukinio ir orbitos sąveika statusas T sritis fizika atitikmenys: angl. spin orbit interaction vok. Spin Bahn Wechselwirkung, f rus. спин орбитальное взаимодействие, n pranc. interaction spin orbite, f …   Fizikos terminų žodynas

  • Spin — Pour les articles homonymes, voir Spin (homonymie). Interaction d un quark (boule rouge) et d un gluon (boule verte) issus de deux protons (boules orange) dont la projection du spin, représentée par l …   Wikipédia en Français

  • Spin (physics) — This article is about spin in quantum mechanics. For rotation in classical mechanics, see angular momentum. In quantum mechanics and particle physics, spin is a fundamental characteristic property of elementary particles, composite particles… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.