# Gauss's lemma (Riemannian geometry)

Gauss's lemma (Riemannian geometry)

In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let "M" be a Riemannian manifold, equipped with its Levi-Civita connection, and "p" a point of "M". The exponential map is a mapping from the tangent space at "p" to "M"::$mathrm\left\{exp\right\} : T_pM o M$which is a diffeomorphism in a neighborhood of zero. Gauss' lemma asserts that the image of a sphere of sufficiently small radius in "T"p"M" under the exponential map is perpendicular to all geodesics originating at "p". The lemma allows the exponential map to be understood as a radial isometry, and is of fundamental importance in the study of geodesic convexity and normal coordinates.

Introduction

We define on $M$ the exponential map at $pin M$ by:$exp_p:T_pMsupset B_\left\{epsilon\right\}\left(0\right) longrightarrow M,qquad vlongmapsto gamma\left(1, p, v\right),$where we have had to restrict the domain $T_pM$ by definition of a ball $B_epsilon\left(0\right)$ of radius $epsilon>0$ and centre $0$ to ensure that $exp_p$ is well-defined, and where $gamma\left(1,p,v\right)$ is the point $qin M$ reached by following the unique geodesic $gamma$ passing through the point $pin M$ with tangent $frac\left\{v\right\}\left\{vert vvert\right\}in T_pM$ for a distance $vert vvert$. It is easy to see that $exp_p$ is a local diffeomorphism around $0in B_epsilon\left(0\right)$. Let $alpha : I ightarrow T_pM$ be a curve differentiable in $T_pM$ such that $alpha\left(0\right):=0$ and $alpha\text{'}\left(0\right):=v$. Since $T_pMcong mathbb R^n$, it is clear that we can choose $alpha\left(t\right):=vt$. In this case, by the definition of the differential of the exponential in $0$ applied over $v$, we obtain:

:$T_0exp_p\left(v\right) = frac\left\{mathrm d\right\}\left\{mathrm d t\right\} Bigl\left(exp_pcircalpha\left(t\right)Bigr\right)Bigvert_\left\{t=0\right\} = frac\left\{mathrm d\right\}\left\{mathrm d t\right\} Bigl\left(exp_p\left(vt\right)Bigr\right)Bigvert_\left\{t=0\right\}=frac\left\{mathrm d\right\}\left\{mathrm d t\right\} Bigl\left(gamma\left(1,p,vt\right)Bigr\right)Bigvert_\left\{t=0\right\}= gamma\text{'}\left(t,p,v\right)Bigvert_\left\{t=0\right\}=v.$

The fact that $exp_p$ is a local diffeomorphism and that $T_0exp_p\left(v\right)=v$ for all $vin B_epsilon\left(0\right)$ allows us to state that $exp_p$ is a local isometry around $0$, i.e.

:$langle T_0exp_p\left(v\right), T_0exp_p\left(w\right) angle_0 = langle v, w angle_pqquadforall v,win B_epsilon\left(0\right).$

This means in particular that it is possible to identify the ball $B_epsilon\left(0\right)subset T_pM$ with a small neighbourhood around $pin M$. We can see that $exp_p$ is a local isometry, but we would like it to be rather more than that. We assert that it is in fact possible to show that this map is a radial isometry !

The exponential map is a radial isometry

Let $pin M$. In what follows, we make the identification $T_vT_pMcong T_pMcong mathbb R^n$.Gauss's Lemma states:

Let $v,win B_epsilon\left(0\right)subset T_vT_pMcong T_pM$ and $M i q:=exp_p\left(v\right)$. Then, :$langle T_vexp_p\left(v\right), T_vexp_p\left(w\right) angle_v = langle v,w angle_q.$

For $pin M$, this lemma means that $exp_p$ is a radial isometry in the following sense: let $vin B_epsilon\left(0\right)$, i.e. such that $exp_p$ is well defined. Moreover, let $q:=exp_p\left(v\right)in M$. Then the exponential $exp_p$ remains an isometry in $q$, and, more generally, all along the geodesic $gamma$ (in so far as $gamma\left(1,p,v\right)=exp_p\left(v\right)$ is well defined)! Then, radially, in all the directions permitted by the domain of definition of $exp_p$, it remains an isometry.

Proof

Recall that

:$T_vexp_p : T_pMcong T_vT_pMsupset T_vB_epsilon\left(0\right)longrightarrow T_\left\{exp_p\left(v\right)\right\}M.$

We proceed in three steps:
* "$T_vexp_p\left(v\right)=v$" : let us construct a curve $alpha : mathbb R supset I ightarrow T_pM$ such that $alpha\left(0\right):=vin T_pM$ and $alpha\text{'}\left(0\right):=vin T_vT_pMcong T_pM$. Since $T_vT_pMcong T_pMcong mathbb R^n$, we can put $alpha\left(t\right):=v\left(t+1\right)$. We find that, thanks to the identification we have made, and since we are only taking equivalence classes of curves, it is possible to choose $alpha\left(t\right) = vt$ (these are exactly the same curves, but shifted (###décalées###), because of the domain of definition $I$; however, the identification allows us to gather them (###ramener###) around $0$ !!!). Hence,

:$T_vexp_p\left(v\right) = frac\left\{mathrm d\right\}\left\{mathrm d t\right\}Bigl\left(exp_pcircalpha\left(t\right)Bigr\right)Bigvert_\left\{t=0\right\}=frac\left\{mathrm d\right\}\left\{mathrm d t\right\}gamma\left(t,p,v\right)Bigvert_\left\{t=0\right\} = v.$

Now let us calculate the scalar product $langle T_vexp_p\left(v\right), T_vexp_p\left(w\right) angle$.

We separate $w$ into a component $w_T$ tangent to $v$ and a component $w_N$ normal to $v$. In particular, we put $w_T:=alpha v$, $alphain mathbb R$.

The preceding step implies directly:

:$langle T_vexp_p\left(v\right), T_vexp_p\left(w\right) angle = langle T_vexp_p\left(v\right), T_vexp_p\left(w_T\right) angle + langle T_vexp_p\left(v\right), T_vexp_p\left(w_N\right) angle$

::$=alphalangle T_vexp_p\left(v\right), T_vexp_p\left(v\right) angle + langle T_vexp_p\left(v\right), T_vexp_p\left(w_N\right) angle=langle v, w_T angle + langle T_vexp_p\left(v\right), T_vexp_p\left(w_N\right) angle.$

We must therefore show that the second term is null, because, according to Gauss's Lemma, we must have:

$langle T_vexp_p\left(v\right), T_vexp_p\left(w_N\right) angle = langle v, w_N angle = 0.$

* "$langle T_vexp_p\left(v\right), T_vexp_p\left(w_N\right) angle = 0$" : Let us define the curve

:$alpha : \right] -epsilon, epsilon \left[ imes \left[0,1\right] longrightarrow T_pM,qquad \left(s,t\right) longmapsto tcdot v\left(s\right),$with $v\left(0\right):=v$ and $v\text{'}\left(0\right):=w_N$. We remark in passing that::$alpha\left(0,1\right) = v\left(0\right) = v,qquadfrac\left\{partial alpha\right\}\left\{partial t\right\}\left(0,t\right) = v\left(0\right) = v,qquadfrac\left\{partial alpha\right\}\left\{partial s\right\}\left(0,t\right) = tw_N.$

Let us put:

:$f : \right] -epsilon, epsilon \left[ imes \left[0,1\right] longrightarrow M,qquad \left(s,t\right)longmapsto exp_p\left(tcdot v\left(s\right)\right),$

and we calculate:

:$T_vexp_p\left(v\right)=T_\left\{alpha\left(0,1\right)\right\}exp_pleft\left(frac\left\{partial alpha\right\}\left\{partial t\right\}\left(0,1\right) ight\right)=frac\left\{partial\right\}\left\{partial t\right\}Bigl\left(exp_pcircalpha\left(s,t\right)Bigr\right)Bigvert_\left\{t=1, s=0\right\}=frac\left\{partial f\right\}\left\{partial t\right\}\left(0,1\right)$and:$T_vexp_p\left(w_N\right)=T_\left\{alpha\left(0,1\right)\right\}exp_pleft\left(frac\left\{partial alpha\right\}\left\{partial s\right\}\left(0,1\right) ight\right)=frac\left\{partial\right\}\left\{partial s\right\}Bigl\left(exp_pcircalpha\left(s,t\right)Bigr\right)Bigvert_\left\{t=1,s=0\right\}=frac\left\{partial f\right\}\left\{partial s\right\}\left(0,1\right).$Hence:$langle T_vexp_p\left(v\right), T_vexp_p\left(w_N\right) angle = langle frac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial s\right\} angle\left(0,1\right).$We can now verify that this scalar product is actually independent of the variable $t$, and therefore that, for example:

:$langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial s\right\} angle\left(0,1\right) = langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial s\right\} angle\left(0,0\right) = 0,$because, according to what has been given above::$lim_\left\{t ightarrow 0\right\}frac\left\{partial f\right\}\left\{partial s\right\}\left(t,0\right) = lim_\left\{t ightarrow 0\right\}T_\left\{tv\right\}exp_p\left(tw_N\right) = 0$being given that the differential is a linear map! This will therefore prove the lemma.
* We verify that "$frac\left\{partial\right\}\left\{partial t\right\}langle frac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial s\right\} angle=0$" : this is a direct calculation. We first take account of the fact that the maps $tmapsto f\left(s,t\right)$ are geodesics, i.e. $frac\left\{D\right\}\left\{partial t\right\}frac\left\{partial f\right\}\left\{partial t\right\}=0$. Therefore,

:$frac\left\{partial\right\}\left\{partial t\right\}langle frac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial s\right\} angle=langleunderbrace\left\{frac\left\{D\right\}\left\{partial t\right\}frac\left\{partial f\right\}\left\{partial t_\left\{=0\right\}, frac\left\{partial f\right\}\left\{partial s\right\} angle+langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{D\right\}\left\{partial t\right\}frac\left\{partial f\right\}\left\{partial s\right\} angle=langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{D\right\}\left\{partial s\right\}frac\left\{partial f\right\}\left\{partial t\right\} angle=frac\left\{partial \right\}\left\{partial s\right\}langle frac\left\{partial f\right\}\left\{partial t\right\}, frac\left\{partial f\right\}\left\{partial t\right\} angle - langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{D\right\}\left\{partial s\right\}frac\left\{partial f\right\}\left\{partial t\right\} angle.$Hence, in particular,:$0=frac\left\{1\right\}\left\{2\right\}frac\left\{partial \right\}\left\{partial s\right\}langle frac\left\{partial f\right\}\left\{partial t\right\}, frac\left\{partial f\right\}\left\{partial t\right\} angle= langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{D\right\}\left\{partial s\right\}frac\left\{partial f\right\}\left\{partial t\right\} angle=frac\left\{partial\right\}\left\{partial t\right\}langle frac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial s\right\} angle,$because, since the maps $tmapsto f\left(s,t\right)$ are geodesics, we have $langlefrac\left\{partial f\right\}\left\{partial t\right\},frac\left\{partial f\right\}\left\{partial t\right\} angle=mathrm\left\{cste\right\}$.

* Riemannian geometry
* Metric tensor

References

* [http://www.amazon.fr/dp/0817634908]

Wikimedia Foundation. 2010.

### См. также в других словарях:

• Gauss's lemma — can mean any of several lemmas named after Carl Friedrich Gauss:* Gauss s lemma (polynomial) * Gauss s lemma (number theory) * Gauss s lemma (Riemannian geometry) See also * List of topics named after Carl Friedrich Gauss …   Wikipedia

• Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

• List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… …   Wikipedia

• Lemme de Gauss (géométrie riemannienne) — En géométrie riemannienne, le lemme de Gauss permet de comprendre l application exponentielle comme une isométrie radiale. Dans ce qui suit, soit M une variété riemannienne dotée d une connexion de Levi Civita (i.e. en particulier, cette… …   Wikipédia en Français

• List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

• Bernhard Riemann — Infobox Scientist name =Bernhard Riemann box width =300px image width =225px caption =Bernhard Riemann, 1863 birth date =September 17, 1826 birth place =Breselenz, Germany death date =death date and age|1866|7|20|1826|9|17 death place =Selasca,… …   Wikipedia

• Darboux frame — In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non umbilic point of a surface …   Wikipedia

• List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

• Exponential map — In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis to all differentiable manifolds with an affine connection. Two important special cases of this are the exponential map …   Wikipedia

• Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) …   Wikipedia

### Поделиться ссылкой на выделенное

##### Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»