# Parabolic cylinder function

Parabolic cylinder function

In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation

:$frac\left\{d^2f\right\}\left\{dz^2\right\} + left\left(az^2+bz+c ight\right)f=0.$

This equation is found, for example, when the technique of separation of variables is used on differential equations which are expressed in parabolic cylindrical coordinates.

The above equation may be brought into two distinct forms (A) and (B) by complete the square and rescaling "z", called H. F. Weber's equations harv|Weber|1869::$frac\left\{d^2f\right\}\left\{dz^2\right\} - left\left(frac\left\{z^2\right\}\left\{4\right\}+a ight\right)f=0$ (A)

and

:$frac\left\{d^2f\right\}\left\{dz^2\right\} + left\left(frac\left\{z^2\right\}\left\{4\right\}-a ight\right)f=0.$ (B)

If

:$f\left(a,z\right),$

is a solution, then so are

:$f\left(a,-z\right), f\left(-a,iz\right) ext\left\{ and \right\}f\left(-a,-iz\right).,$

If

:$f\left(a,z\right),$

is a solution of equation (A), then

:$f\left(-ia,ze^\left\{ipi/4\right\}\right),$

is a solution of (B), and, by symmetry,

:$f\left(-ia,-ze^\left\{ipi/4\right\}\right), f\left(ia,-ze^\left\{-ipi/4\right\}\right) ext\left\{ and \right\}f\left(ia,ze^\left\{-ipi/4\right\}\right),$

are also solutions of (B).

olutions

There are independent even and odd solutions of the form (A). These are given by (following the notation of Abramowitz and Stegun):

:$y_1\left(a;z\right) = exp\left(-z^2/4\right) ;_1F_1 left\left(frac\left\{a\right\}\left\{2\right\}+frac\left\{1\right\}\left\{4\right\}; ;frac\left\{1\right\}\left\{2\right\}; ; ; frac\left\{z^2\right\}\left\{2\right\} ight\right),,,,,, \left(mathrm\left\{even\right\}\right)$

and

:$y_2\left(a;z\right) = zexp\left(-z^2/4\right) ;_1F_1 left\left(frac\left\{a\right\}\left\{2\right\}+frac\left\{3\right\}\left\{4\right\}; ;frac\left\{3\right\}\left\{2\right\}; ; ; frac\left\{z^2\right\}\left\{2\right\} ight\right),,,,,, \left(mathrm\left\{odd\right\}\right)$

where $;_1F_1 \left(a;b;z\right)=M\left(a;b;z\right)$ is the confluent hypergeometric function.

Other pairs of independent solutions may be formed from linear combinations of the above solutions (see Abramowitz and Stegun). One such pair is based upon their behavior at infinity:

:$U\left(a,z\right)=frac\left\{1\right\}\left\{2^xisqrt\left\{pileft \left[cos\left(xipi\right)Gamma\left(1/2-xi\right),y_1\left(a,z\right)-sqrt\left\{2\right\}sin\left(xipi\right)Gamma\left(1-xi\right),y_2\left(a,z\right) ight\right]$

:$V\left(a,z\right)=frac\left\{1\right\}\left\{2^xisqrt\left\{pi\right\}Gamma \left[1/2-a\right] \right\}left \left[sin\left(xipi\right)Gamma\left(1/2-xi\right),y_1\left(a,z\right)+sqrt\left\{2\right\}cos\left(xipi\right)Gamma\left(1-xi\right),y_2\left(a,z\right) ight\right]$

where:$xi=frac\left\{1\right\}\left\{4\right\}+frac\left\{a\right\}\left\{2\right\}$

"U"("a", "z") approaches zero for large values of |z| and |arg("z")| < &pi;/2, while "V"("a", "z") diverges for large values of positive real "z" .

:

and

:$lim_\left\{|z| ightarrowinfty\right\}V\left(a,z\right)=sqrt\left\{frac\left\{2\right\}\left\{pie^\left\{z^2/2\right\}z^\left\{a-1/2\right\},,,,\left(mathrm\left\{for\right\},arg\left(z\right)=0\right)$

For half-integer values of "a", these can be re-expressed in terms of Hermite polynomials; alternately, they can also be expressed in terms of Bessel functions.

References

* Milton Abramowitz and Irene A. Stegun, eds., "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables" 1972, Dover: New York. "(See [http://www.math.sfu.ca/~cbm/aands/page_686.htm chapter 19] .)"
*springer|id=W/w097310|title=Weber equation|first=N.Kh.|last= Rozov
*H.F. Weber, "Ueber die Integration der partiellen Differentialgleichung $partial^2u/partial x^2+partial^2u/partial y^2+k^2u=0$" Math. Ann. , 1 (1869) pp. 1–36

Wikimedia Foundation. 2010.

### См. также в других словарях:

• Confluent hypergeometric function — In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular… …   Wikipedia

• Quadratic function — A quadratic function, in mathematics, is a polynomial function of the form f(x)=ax^2+bx+c ,!, where a e 0 ,!. The graph of a quadratic function is a parabola whose major axis is parallel to the y axis.The expression ax^2+bx+c in the definition of …   Wikipedia

• Weber function — In mathematics, Weber function can refer to several different families of functions, mostly named after the physicist H. F. Weber. *Weber s modular function (named after the mathematician H. M. Weber). *Weber function is sometimes used as a name… …   Wikipedia

• special function — ▪ mathematics       any of a class of mathematical functions (function) that arise in the solution of various classical problems of physics. These problems generally involve the flow of electromagnetic, acoustic, or thermal energy. Different… …   Universalium

• List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

• List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

• Функции параболического цилиндра — (функции Вебера) общее название для специальных функций, являющихся решениями дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа, уравнение… …   Википедия

• Функции Эрмита — Функции параболического цилиндра общее название для специальных функций, являющихся решениями дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа,… …   Википедия

• Функция Эрмита — Функции параболического цилиндра общее название для специальных функций, являющихся решениями дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа,… …   Википедия

• Normal-exponential-gamma distribution — Normal Exponential Gamma parameters: μ ∈ R mean (location) shape scale support: pdf …   Wikipedia

### Поделиться ссылкой на выделенное

##### Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»