Nullor

Nullor
Nullor electronic symbol (balanced version)
Nullor electronic symbol (unbalanced version)

A nullor is a theoretical two-port network composed of a nullator at its input and a norator at its output.[1] Nullors represent an ideal amplifier, having infinite current, voltage, transconductance and transimpedance gain.[2] Its transmission parameters are all zero, that is, its input-output behavior is summarized with the matrix:

 
\begin{pmatrix}
v_1\\
i_1
\end{pmatrix}
=
\begin{pmatrix}
  0 & 0 \\ 
  0 & 0 
\end{pmatrix}
\begin{pmatrix}
v_2\\
i_2
\end{pmatrix}

 
 \ .

In negative feedback circuits, the circuit surrounding the nullor determines the nullor output in such a way as to force the nullor input to zero.

Inserting a nullor in a circuit schematic imposes mathematical constraints on how that circuit must behave, forcing the circuit itself to adopt whatever arrangements are needed to meet the conditions. For example, an ideal op amp can be modeled using a nullor,[3] and the textbook analysis of a feedback circuit using an ideal op amp uses the mathematical conditions imposed by the nullor to analyze the circuit surrounding the op amp.

Example: voltage-controlled current sink

Figure 1: Operational-amplifier based current sink. Because the op amp is modeled as a nullor, op amp input variables are zero regardless of the values for its output variables.

Figure 1 shows a voltage-controlled current sink.[4] The sink is intended to draw the same current iOUT regardless of the applied voltage VCC at the output. The value of current drawn is to be set by the input voltage vIN. Here the sink is to be analyzed by idealizing the op amp as a nullor.

Using properties of the input nullator portion of the nullor, the input voltage across the op amp input terminals is zero. Consequently, the voltage across reference resistor RR is the applied voltage vIN, making the current in RR simply vIN / RR. Again using the nullator properties, the input current to the nullor is zero. Consequently, Kirchhoff's current law at the emitter provides an emitter current of vIN / RR. Using properties of the norator output portion of the nullor, the nullor provides whatever current is demanded of it, regardless of the voltage at its output. In this case, it provides the transistor base current iB. Thus, Kirchhoff's current law applied to the transistor as a whole provides the output current drawn through resistor RC as:

 i_{OUT} = \frac {v_{IN}} {R_{R}} -i_B \ ,

where the base current of the bipolar transistor iB is normally negligible provided the transistor remains in active mode. That is, based upon the idealization of a nullor, the output current is controlled by the user-applied input voltage vIN and the designer's choice for the reference resistor RR.

The purpose of the transistor in the circuit is to reduce the portion of the current in RR supplied by the op amp. Without the transistor, the current through RC would be iOUT = ( VCC − vIN ) / RC, which interferes with the design goal of independence of iOUT from VCC. Another practical advantage of the transistor is that the op amp must deliver only the small transistor base current, which is unlikely to tax the op amp's current delivery capability. Of course, only real op amps are current-limited, not nullors.

The remaining variation of the current with the voltage VCC is due to the Early effect, which causes the β of the transistor to change with its collector-to-base voltage VCB according to the relation β = β0 ( 1 + VCB / VA ), where VA is the so-called Early voltage. Analysis based upon a nullor leads to the output resistance of this current sink as Rout = rO ( β + 1 ) + RC , where rO is the small-signal transistor output resistance given by rO = ( VA + VCB ) / iout. See current mirror for the analysis.

Use of the nullor idealization allows design of the circuitry around the op amp. The practical problem remains of designing an op amp that behaves like a nullor.

References

  1. ^ The name "nullor" was introduced by H.J. Carlin, Singular network elements, IEEE Trans. Circuit Theory, March 1965, vol. CT-11, pp. 67-72.
  2. ^ Verhoeven C J M van Staveren A Monna G L E Kouwenhoven M H L & Yildiz E (2003). Structured electronic design: negative feedback amplifiers. Boston/Dordrecht/London: Kluwer Academic. pp. §2.2.2 pp. 32–34. ISBN 1402075901. http://books.google.com/books?id=p8wDptzCMrUC&pg=PA24&dq=isbn:1402075901&sig=cxJIK6hgY7wKfWc7cV6ZVHT-iDc#PPA32,M1. 
  3. ^ Verhoeven C J M van Staveren A Monna G L E Kouwenhoven M H L & Yildiz E. §2.6. ISBN 1402075901. http://books.google.com/books?id=p8wDptzCMrUC&pg=PA24&dq=isbn:1402075901&sig=cxJIK6hgY7wKfWc7cV6ZVHT-iDc#PPA43,M1. 
  4. ^ Richard R Spencer & Ghausi MS (2003). Introduction to electronic circuit design. Upper Saddle River NJ: Prentice Hall/Pearson Education. pp. §5.1.6 pp. 226–227. ISBN 0-201-36183-3. http://worldcat.org/isbn/0-201-36183-3. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Nullor — Symbol des Nullors Als Nullor bezeichnet man in der Systemtheorie einen Vierpol, der aus einem Nullator am Eingang und einem Norator am Ausgang besteht. Die Bezeichnung wurde von H.J. Carlin 1965 geprägt. [1] Der Nullor ist das Modell für einen… …   Deutsch Wikipedia

  • Asymptotic gain model — The asymptotic gain model [Middlebrook, RD: Design oriented analysis of feedback amplifiers ; Proc. of National Electronics Conference, Vol. XX, Oct. 1964, pp. 1 4] G {infin} T} . while in classical feedback theory, in terms of the open loop gain …   Wikipedia

  • Current mirror — A current mirror is a circuit designed to copy a current through one active device by controlling the current in another active device of a circuit, keeping the output current constant regardless of loading. The current being copied can be, and… …   Wikipedia

  • Nullator — electronic symbol In electronics, a nullator is a theoretical linear, time invariant one port defined as having zero current and voltage across its terminals. Nullators are strange in the sense that they simultaneously have properties of both a… …   Wikipedia

  • Norator — electronic symbol In electronics, a norator is a theoretical linear, time invariant one port which can have an arbitrary current and voltage between its terminals. A norator represents a controlled voltage or current source with infinite gain.[1] …   Wikipedia

  • Norator — Schaltzeichen des Norators Als Norator bezeichnet man in der Systemtheorie einen Zweipol, durch den ein beliebiger Strom (Ib) fließt und an dem eine beliebige Spannung (Ub) abfällt. Dieser Zweipol ergibt also keine einschränkenden… …   Deutsch Wikipedia

  • Nullator — Symbol des Nullators Als Nullator bezeichnet man in der Systemtheorie einen Zweipol, durch den kein Strom fließt und an dem keine Spannung abfällt. Zum Nullator gehört die Netzwerkgleichung I=U=0. Ein Nullator stellt beispielsweise den… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”