Signals intelligence operational platforms by nation


Signals intelligence operational platforms by nation

::"This article is a subset article under the main article Signals intelligence, which addresses the unifying conceptual and technical factors and common technologies in this intelligence discipline. This article deals with current signals intelligence collection equipment by nation, including fixed and mobile ground stations, ships, submarines, aircraft and satellites. See Signals intelligence by alliances, nations and industries for the organization of SIGINT activities, and for context, see Signals intelligence in modern history. For a complete hierarchical list of articles, see the intelligence cycle management hierarchy."

Signals intelligence Operational Platforms are employed by nations to collect signals intelligence, which is intelligence-gathering by interception of signals, whether between people (i.e., COMINT or communications intelligence) or between machines (i.e., ELINT or electronic intelligence), or mixtures of the two. As sensitive information is often encrypted, signals intelligence often involves the use of cryptanalysis. However, traffic analysis—the study of who is signalling whom and in what quantity—can often produce valuable information, even when the messages themselves cannot be decrypted.

Ground Platforms

It can be difficult to draw the line between a ground-based SIGINT receiving station, and facilities that have control, coordination, and processing functions in the "bigger picture" of signals intelligence. Many stations, for the countries with stations in many parts of the world, do have both aspects. There are also some that are clearly intercept only.

The first signals intelligence platforms were listening stations on the ground. Early tactical stations were in use as early as World War I, but permanent strategic signals intelligence stations were established as world tensions grew before WWII.

Arguably, one combined intercept and jamming technique of WWI was the use of shotguns against carrier pigeons, followed by reading the message attached to the bird.

While pigeons can probably be safe, other collection techniques may enjoy a resurgence. One specialized technique, originally used in the First World War but again in the Korean War, was interception using ground return from wired telephones. In mountainous terrain, it might again have applications, such as Afghan caves where wire might be run without the danger of free-space interception.

Satellite communications generally must be intercepted by large parabolic antennas on the ground, although there are possibilities that aircraft, intelligence satellites, and ships might also intercept. "To receive satellite signals, ...only parabolic antennas are used. If the parabolic antennas are standing on an open site, it is possible to calculate on the basis of their position, their elevation and their compass (azimuth) angle which satellite is being received. This is possible, for example, in Morwenstow (UK), Yakima (USA) or Sugar Grove (USA)." citation|url=http://www.fas.org/irp/program/process/rapport_echelon_en.pdf|title=European Parliament Report on ECHELON|year=2001|month=July|accessdate=2006-08-14] .

Australia: Ground Platforms

A facility at Geraldton, Australia, with Australian and British personnel was built in the 1990s. The British personnel were previously assigned to Hong Kong. It is reported to have four satellite antennas...trained on satellites above the Indian Ocean and the Pacific. "According to statements made under oath in the Australian Parliament by an expert, transmissions from civilian telecommunications satellites are intercepted at Geraldton."

Another station, in Pine Gap, was established in 1966 and jointly operated by Australians and Americans. As opposed to many military-only bases, Pine Gap has a signinficant number of CIA as well as military NAVSECGRU staff. It has 18 antennas, and has been considered first a receiving station for SIGINT satellites, but the size of some of its antennas are more associated with a requirement to intercept communications from commercial communications satellites. The station in Pine Gap was established in 1966. It is run by the Australian Secret Service (DSD), and roughly half of the 900 station personnel are Americans from the CIA and "Until 1980 no Australians were allowed to work in the signals analysis department; since then, they have been granted free access to all parts of the station, with the exception of the Americans’ own cryptography room."

The European Parliament report stated that the Shoal Bay facility is "run solely by the Australian Intelligence Service. Of the satellite antennas visible on photographs, the five larger ones have a maximum diameter of 8 m, and the sixth antenna visible is smaller still. According to information provided by Richelson, the antennas are trained on the Indonesian PALAPA satellites. It is not clear whether the station is part of the global system for the interception of civilian communications."

Cuba: Ground Platforms

While Cuba had traditionally been a Soviet client, it both has been developing indigenous capabilities, including equipment design and manufacture, as well as having Chinese-operated stations on its soil. Within the Cuban intelligence ministry, a Counter-Electronic Warfare Department was established in 1997, at the same level as the Technical Department and the Foreign Intelligence) Department. In 1992, a tactically oriented Counter-Electronic Warfare Department was created. The national intelligence organization also runs electronic warfare and SIGINT for the Air Force and Navy.

Russia and China, at various times, have operated or are operating intercept stations in Cuba. The largest and best-known, Lourdes SIGINT Station, was shut down by Russia in 2001, along with the Russian station at Cam Ranh Bay, Vietnam.citation
last = Cable News Network
title = Russia to close Cuban spy station
url = http://archives.cnn.com/2001/WORLD/europe/10/17/putin.cuba/index.html
accessdate = 2007-10-13
] Of the additional bases are in Cuba, two of which are operated by China:citation
url = http://www.cubainfolinks.org/webpage/Articles/bejucal.htm
title = Information Warfare (IW): Signals Intelligence (SIGINT), Electronic Warfare (EW) and Cyber-Warfare. Asia and Cuba
first = Manuel | Last = Cereijo
date=February 2003
] :*Bejucal:*Yaguajay:*Santiago de Cuba:*Paseo

Chinese personnel, in 1998, began operating the Bejucal and Santiago de Cuba facilities. The first seems concerned with intercepting US telephone communications and data traffic, while the second appears aimed at US military satellites One is a large complex at Bejucal, just south of Havana, which has ten SATCOM antennas, and which is primarily concerned with intercepting telephone communications in the US. A 'cyber-warfare' unit at the station focuses on computer data traffic. The second is located northeast of Santiago de Cuba at the eastern-most part of the country and is 'dedicated mainly to intercepting U.S. military satellite communications'.

France: Ground Platforms

France: Strategic Ground Platforms

The technical department of the French espionage service, DGSE, operates a major communications satellite collection site at Domme, in the Dordogne valley to the east of Bordeaux, in south-western France. This site, which includes at least 11 collection antennas, seven of them directed at Atlantic satellites, is clearly as extensive and capable as the largest sites in the UKUSA network. citation
first = Duncan | last = Campbell
url = http://duncan.gn.apc.org/stoa_cover.htm
title = Interception Capabilities 2000: Report to the European Parliament
] Reports by journalists, cited in the European Parliament report, confirm the Domme installation, and also a facility at Alluetts-le-Roi near Paris. There were also reports of stations in Kourou in French Guyana and in Mayotte.

France: Tactical Ground Platforms

At the tactical force protection levels, Thales was awarded a contract to build SAEC (Station d'Appui Electronique de Contact) force protection stations, by the French defence procurement agency (DGA)citation
author = Thales
title = Tactical SIGINT stations for force protection
date=27 November 2006
url = http://www.thalesonline.com/landjoint/Activities/Details.html?link=09101D63-655B-112A-6D31-08497B253F1C:central%20activities%20all&locale=EN-gb&Title=SAEC&dis=1
accessdate = 2007-10-18
] . The contract was awarded in 2004 and initial operational capability is expected by 2007.

The SAEC is an armored vehicle carrying ELINT and the Thales XPLORER COMINT to complement EW platforms. It will have wideband acquisition, direction-finding and analysis sensors, for real-time monitoring and recording for subsequent analysis. It can operate standalone, or network using VHF (PR4G) and HF (TRC3700) communication systems for networking with other SAEC and the SGEA higher level EW system.

SGEA will do intelligence fusion, including from UAV-carried sensor, and coordinate with electronic attack.

Germany: Ground Platforms

Germany: Strategic Ground Platforms

Germany operates a strategic ground station at the Zentrum für Nachrichtenwesen der Bundeswehr (ZNBw), in Gelsdorf, which is responsible for controlling Germany's SAR Lupe system and analysing the retrieved data. A large data archive of images will be kept in a former Cold War bunker belonging to the ZNBw. The Bundesnachrichtendienst also operates several SIGINT platforms.

Germany: Tactical Ground Platforms

Germany operates several tactical ground platforms for SIGINT gathering.

The "Kommando Strategische Aufklärung" (Strategic Reconnaissance Command) of the Bundeswehr operates three mobile and three stationary SIGNIT battalions.

Russia: Ground Platforms

Russia: Strategic Ground Platforms

Russia closed its major ground collection stations at Lourdes in Cuba and Cam Ranh Bay in Vietnam. Stations remain at the Ras Karma Military Airbase, near QaDub on Socotra Island in Yemen, across the Red Sea to Somalia, and at the mouth of the Gulf of Aden. which lies opposite the coast of Somalia at the mouth of the Gulf of Aden in the Indian Ocean. An inactive station at Ramona in North Korea may reopen.

Russia: Tactical Ground Platforms

Arbalet-M is mentioned in Russian literature as a portable direction-finding and electronic attack systemcitation
url = http://leav-www.army.mil/fmso/documents/iwchechen.htm
title = Information Warfare in the Second (1999-Present) Chechen War: Motivator for Military Reform?
author = Thomas, Timothy L.
publisher = US Army Foreign Military Studies Office
accessdate = 2007-11-14
] used in the Second Chechen War.

United Kingdom: Ground Platforms

United Kingdom Strategic Ground Platforms

Ayios Nikolaos Station on Cyprus is a British installation. The station, has 14 satellite antennas, the size of which is unknown. Its location, close to the Arab states, and the fact that Ayios Nikolaos is the only station sited within certain footprints (above all spot beams) in this area, point to its having an important role in intelligence gathering.Fact|date=April 2008

Morwenstow, England, operated by GCHQ, has "21 satellite antennas, three of which have a diameter of 30 m; ... the size and number of the satellite antennas and the location of the station, only 110 km from the [commercial] telecommunications station in Goonhilly, leave no doubt as to its task of intercepting transmissions from telecommunications satellites.

United Kingdom Tactical Ground Platforms

The British 18 (UKSF) Signals Regiment provides SIGINTcitation
url = http://www.eliteukforces.info/18-UKSF-Signals/
title = 18 (UKSF) Signals Regiment
accessdate = 2007-11-16
] personnel, including from the preexisting 264 (SAS) Signals Squadron and SBS Signals Squadron to provide specialist SIGINT, secure communications, and information technology augmentation to operational units. They may be operating in counterterror roles in Iraq in the joint UK/US TASK FORCE BLACKcitation
url = http://www.eliteukforces.info/special-air-service/task-force-black/
title = TASK FORCE BLACK
accessdate = 2007-11-16
] .

United States: Ground Platforms

That TENCAP and TIARA complement one another, and benefit tactical and strategic units.

United States: Strategic Ground Platforms

NSA, with NRO cooperation, operates a number of Regional SIGINT Operations Sites (RSOC) and other support activitiescite web
last = Wirbel
first = Loring
title = Reporter's Notebook: Space -- intelligence technology's embattled frontier
journal = EETimesOnline | publisher = CMP
year=2007
url = http://www.eetimes.com/news/97/951news/space.html
accessdate = 2007-10-11
] .:*Europe ::*Menwith Hill Station (Yorkshire, UK). (USMC Support Company G) ::*Bad Aibling (Munich, Germany):*Asia::*Misawa Air Force Base, Japan (USMC Support Company E) :*North America::*Fort Gordon, Georgia. US Army facility (USMC Support Company D)::*Kelly Air Force Base, San Antonio, Texas. US Air Intelligence Agency (USMC Support Company H)::*At NSA Headquarters, Ft. Meade, MD,a company of the Marine Support BattalionThe Marine units report National SIGINT Operations Center at NSA headquarters at Ft. Meade, MDcitation
last = US Marine Corps
title = Marine Corps Warfighting Publication (MCWP) 2-15.2, Signals Intelligence
publisher = US Marine Corps
date=22 February 1999
url = http://www.fas.org/irp/doddir/usmc/mcwp2-15-2.pdf
accessdate = 2007-10-11
] . These facilities often have both a SIGINT receiving and a higher-level management and control function.

Jeffrey Richelson, for the George Washington University National Security Archive, links the Air Force's 544th Intelligence Group with ECHELON operations citation
last = Richelson
first = Jeffrey T.
title = National Security Archive Electronic Briefing Book No. 24: The National Security Agency Declassified
date=January 13, 2000
url = http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB23/index2.html
accessdate = 2007-10-11
] . He places its Detachment 2 located at Sabana Seca, Puerto Rico; Detachment 3 at Sugar Grove, West Virginia; and Detachment 4 at Yakima, Washington.

In the 1994 Air Intelligence Agency (AIA) history, Misawa is specifically associated with ECHELON only in the context of a collection system called LADYLOVE. Misawa, although many of its SIGINT units were deactivated in 2000-2001, still had an RSOC coordination role. citation
last = US Air Force
title = History of the Air Intelligence Agency, 1 January - 31 December 1994
date = 15June1995
url = http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB23/12-01.htm
accessdate = 2007-10-11
] The AIA history says the "Misawa LADYLOVE activity was initiated during the Cold War to intercept Soviet military communications transmitted via satellite—along with similar operations at Menwith Hill, UK; Bad Aibling, Germany; and Rosman, North Carolina."

According to Duncan Campbell, "In 1999, the Sabana Seca field station appeared to have at least four radomes for satellite communications, one located beside an existing high frequency interception system targeted on Cuban radio communications." According to Richelson, this is the assignment of Detachment 2 of the 544th Intelligence Group.

The Naval Security Group Activity (NAVSECGRUACT) at Sugar Grove, West Virginia, has missions defined including "maintaining and operating an ECHELON site"citation
last = Commander, Naval Security Group
title = NAVSECGRU Instruction C5450.48A, Subj: Mission, Functions and Tasks of Naval Security Group Activity (NAVSECGRUACT) Sugar Grove, West Virginia,
date=September 3, 1991
url = http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB23/09-02.htm
accessdate = 2007-10-11
] . Detachment 3 of the US Air Force 544th Intelligence Group is a tenant at Sugar Grove, and the 544th has been associated with ECHELON activities. While the main subordinate command at Sugar Grove is redacted, it would appear, given the presence of large satellite antennas at Sugar Grove, but it not appearing in lists of NSOCs, that it is principally an intercept facility. Campbell associates Sugar Grove with NSA programs called TIMBERLINE, LANFORD, LATERAL, and SALUTE.

The Yakima site, home of Detachment 4 of the 544th, is considered an ECHELON site: "Six satellite antennas have been installed on the site [they are claimed to be] trained on INTELSAT satellites over the Pacific (two satellite antennas) and INTELSAT satellites over the Atlantic, and on INMARSAT Satellite 2.

"The fact that Yakima was established at the same time as the first generation of INTELSAT satellites went into orbit, and the general description of the tasks of the 544th Intelligence Group, suggest that the station has a role in global communications surveillance. A further clue is provided by Yakima’s proximity to a normal satellite receiving station, which lies convert|100|mi|km|-1 to the north."

United States: Tactical Ground Systems

Some systems are used at land stations of all services. AN/TSQ-190(V) TROJAN SPIRIT II (TS II) is a mobile SHF satellite communications (SATCOM) system that uses commercial or military satellites to receive, transmit, and process secure, voice, data, video teleconferencing (VTC), and facsimile communications. It provides 14 channels of digital voice or data, to intelligence (SCI) or general military (GENSER) with a maximum aggregate data rate of 1.544 megabits per second (Mbit/s). LAN communications are supported by SCI and GENSER ethernets. Routers provide access to the SIPRNET, JWICS, NSA networks, and the defense SATCOM system, as needed for coordinating MAGTF SIGINT and other intelligence operations. The system fits into 3 HMMWVs with mounted standard integrated command postlightweight multipurpose shelters, tunnel-mounted power generation units, and towed 2.4 meter (C, Kuband) and 6.1 meter (C, Ku, X-band) antennas.

TROJAN SPIRIT II is being replaced by AN/TSQ-226(V)TROJAN SPIRIT LITE. The TROJAN SPIRIT LITE is fielded in three versions: :*(V)1 -a commercial off-the-shelf version in a transit case configuration used to augment Military Intelligence dissemination and communications requirements primarily at corps and division, and some EAC:*(V)2) for the Marines:*(V)2-SBCT (pallet, shelter, ECV, trailer) for Army Brigade Combat Teams:*(V)3 is similar to (V)2 but adds an additional shelter and workstation.:*(V)4 for Echelons above Corps

Both TROJAN SPIRIT II and TROJAN SPIRIT LITE will transition to the Warfighter Information Network-Terrestrial (WIN-T).

US Army: Tactical Ground Stations

While some may call "Transformation of the United States Army" a "buzzword", the idea reflects some very major changes. Among the most basic is moving away from the Division as the fundamental unit of action, and moving to smaller and more flexible Brigade combat teams {BCT). As a very basic part of those changes, not only are considerably more intelligence assets being assigned to the BCTs, but to larger army formations. In both these cases, SIGINT represents a very major portion of the growth in assetsCitation
last = Association of the US Army
title = Key Issues Relevant to Army Intelligence Transformation
date=July 2007
url = http://www.ausa.org/webpub/DeptILW.nsf/byid/JRAY-75LT2E
accessdate = 2007-10-14
] . Each combat BCT has an organic military intelligence (MI) company, with improved SIGINT capability. In addition, five battlefield surveillance brigades (BfSB), of which an MI Collection Battalion is the core element, are being formed. Each of those battalions is 1/3 SIGINT; the Army expects to have more than 7,000 new MI soldiers by 2013.

Prophet Block I began rolling out in 1999-2000, and was operational in Afghanistan. It replaced the AN/TSQ-138 Trailblazer, AN/TRQ-32 Teammate, AN/TLQ-17A Trafficjam, and the AN/PRD-12 systems.citation
title = AN/MLQ-40(V)3 Prophet
url = http://www.deagel.com/Special-Purpose-Vehicles/ANMLQ-40V3-Prophet_a000507001.aspx
accessdate = 2007-11-13
] . The system will be getting incremental improvements, which reflect both improvements in technology and in military organizational structurecitation
title = Prophet: Tactical SIGINT for the 21st Century - ground signal intelligence system
url = http://findarticles.com/p/articles/mi_m0IBS/is_3_26/ai_67544226
journal = Military Intelligence Professional Bulletin
date = July, 2000
author = Kevin C. Peterson
accessdate = 2007-11-13
] . At the time of initial operational capability, the assumption was that PROPHET would be issued six systems per division, four per armored cavalry regiment (ACR), three per Initial Brigade Combat Team (IBCT). Tasking for Prophet will come from primarily from the division-level Analysis and Control Element, modified by brigade-specific priorities and then send them to the Prophet via SINCGARS radio.

Physically, the basic Prophet platform is built around a mounted AN/PRD-13(V)2 direction-finding (DF) system designed to provide force protection in a DS role to the maneuver brigade. This system operates in the HF, VHF and UHF spectra. It provides line-of-bearing (LOB) data and intercept on unencrypted, single-channel push-to-talk transmissions.

It can be put into subassemblies that can be carried by a four-man team individual soldiers, althouth the more common deployment will be in an M1097 HMMWV. In the vehicle-mounted variant, it can operate while moving; the vehicle also has racks for two AN/VRC-92 SINCGARS Combat Net Radios with backpacks, and carries an antenna mast and other equipment.

Tactical communications, not just for SIGINT, are "flattening", such that units do not just report up their chain of command, but to adjacent units. One of the rationales for doing so is that a combat unit can see an opportunity and move against it, without it being misidentified by a neighboring unit and being engaged with "friendly fire."

Prophet Block II adds electronic attack (EA) capability to Prophet, while Block III upgrades the Prophet receiver to collect against advanced and special signals. These enhancements will be coordinated with UAVs and tactical aircraft with expanded SIGINT capability. Blocks IV (expected IOC 2008) and V (expected IOC 2015)citation
url = http://www.afcea.org/signal/articles/templates/SIGNAL_Article_Template.asp?articleid=324&zoneid=31
title = Signal Intelligence System Uncovers Enemy Sites
author = Lawlor, Maryann
date = October 2002
journal = Signal
accessdate = 2007-11-13
] add MASINT along with micro-and robotic receivers to the Prophet Ground system.

MASINT will include ground surveillance radars (PPSSD) and the Improved--Remotely Monitored Battlefield Sensor System (I-REMBASS) aboard a shelter-mounted HMMWV. Prophet, with the I-REMBASS monitoring system, will form the Ground Sensor Platoon of the brigade combat team Reconnaissance, Surveillance, and Target Acquisition (RSTA) Squadron.

Prophet Air will begin in a UAV.

For SIGINT operations, the basic US Marine augmentation to Force Recon is a 6-man detachment from a Radio Reconnaissance Platoon. There is a SIGINT platoon within the Intelligence Company of the new Marine Special Operations Support Groupcitation
url =http://www.usmc.mil/sgtmaj/smmcsymposium.nsf/440ade826dba63718525685f0055d7d5/41a370d83d1384dd852573360065ecc3/$FILE/MARSOC%20Brief.pdf
title = U.S. Marine Corps Forces, Special Operations Command(MARSOC)
accessdate = 2007-11-17
] .

Army Special Forces have the Support Operations Team-Alpha that can operate with an SF team, or independently. This is a low-level collection team, which typically has four personnelcitation
url =http://www.fas.org/irp/doddir/army/fm3-05-102.pdf
title = FM 3-05.102 Army Special Forces Intelligence
date = 2001-07
] . Their primary equipment is the AN/PRD-13 SOF SIGINT Manpack System (SSMS), with capabilities including direction-finding capability from 2 MHz to 2 GHz, and monitoring from 1 to 1400 MHz citation
url = http://www.asitinc.com/products-services/docoutput.aspx?id=899
author = L3/Linkabit Communications
title = The AN/PRD-13 (V1) Man Portable Signal Intelligence System
] .

US Marine Corps: Tactical Ground Stations

Subordinate to Radio Battalions, US Marines have a multifunction AN/MLQ-36 Mobile Electronic Warfare Support System that gives the operators limited armor protection. It contains :* Two WJ-8618B(S1) acquisition receivers and a WJ-32850 MANTIS DF system which, together, provide signal intercept and radio direction finding:* One AN/ULQl9(V) electronic attack set:* a secure communications system, :* an intercom system installed :* logistics variant of the light armored vehicle (LAV)-25

The AN/PRD-12 is a tactical, man-transportable system that provides search, intercept, and DF oncommunications signals in the HF/VHF/UHF bands. Up to four PRD-12 stations can be networked, providing DF data to a mission control station via radio link with single-channel ground and airborne radio system (SINCGARS) equipment. Any of the four stations can act as mission control.

Assigned 1 per Marine Division, 1 per Marinew Air Wing, and one per Radio Battalion, the AN/MSC-63A is a shelterized communications switch that provides a secure semiautomated data communications switch and terminals for the processing of general service (GENSER) or defense special security communications system (DSSCS) sensitive compartmented information (SCI) record message traffic.

The AN/TSQ-130(V)2/(V)5 technical control and analysis center (TCAC) is a tactical, transportable, SIGINT-processing, analysis and reporting system installed in a large, selfcontained, modified S-280G shelter. TCAC is the primary system used by the Radio Battalion SIGINT support unit. The (V)2 is the baseline system, while the (V)5 has upgraded communications capabilities. It is to be replaced by the AN/MYQ-8 TCAC-PIP will replace the TCAC.

AN/MYQ-8 will consist of three remoteable analysis workstations (RAWSs), one communications interface module (CIM), and one supervisor control module (SCM). Remoteable Analysis Workstations (RAWS) provides the capability to do analysis and reporting in or away from the shelter, connecting via LAN or radio in the latter case. It also can operate in a stand-alone mode. Communications Interface Modules (CIM) provide man-machine interface between the TCAC PIP and other RadBn systems (e.g., team portable collection system, mobile electronic warfare support system) or external intelligence agencies. The Supervisor Control Module (SCM) is an administrator interface to file server and system supervision of the TCAC.

The AN/USC-55 commander’s tactical terminal (CTT) is a multiservice-developed, special application, UHF satellite communications receiver that can be dedicated to receive critical, timesensitive intelligence by commanders and intelligence centers at all echelons, in near-real-time, at GENSER or SCI levels. The receiver provides one full-duplex and two receive-only channels.

The team portable collection system (TPCS) upgrade is a semiautomated, man-transportable communications intelligence (COMINT) system. It provides intercept, collection, radio directionfinding, analysis, reporting, and collection management support. T The TPCS upgrade made up of three subsystems::*COMINT collection subsystem (CCS), including the AN/PRD-12 direction finding set (to be replace by TOPMAKER) and collection receivers:* analysis subsystem (AS) :* communications subsystem (CS) using single-channel radio nets are used to link TPCS upgrade outstations with the RadBn TCAC to allow automated processing and dissemination of collected information and ultimate dissemination to the MAGTF G-2/S-2 and other organizations.

Intended for the Radio Reconnaissance Teams attached to Marine Expeditionary Units, the radio reconnaissance equipment program (RREP) SIGINT suite (SS)-1 is a semiautomated, integrated, open architecture radio intercept and DF system composed of a ruggedized computer and six functional modules that plug together. RREP SS-1 modules may operate independently or semi-independently . SS-1 enables the radio reconnaissance teams (RRTs) to target the majority of low-level, single-channel, unencrypted tactical signals of interest used by military, police, insurgents, and other potential hostile forces throughout the world.

The RREP SS-2 will provide a highly deployable, man-transportable, signals intercept and DF system employed by RRTs in support of the entire spectrum of MAGTF operations. RREP SS-2 employs advanced receiver capabilities, cellular phone and other digital communications collection and DF technology, global positioning system map navigation software, a more modular design, and electronic attack capabilities. As with RREP SS-1, the SS-2 operates at the modular level and at the integrated system level. The system can be controlled manually or via subcompact personal computer.

The handheld integrated directional receiver and homing (HIDRAH) system is a man-transportable, tactical, cordless, radio intercept and signal line-of-bearing (LOB) DF system consisting of several COTS items in an enclosure appropriate for the field. HIDRAH provides RRTs with a threat I&W capability during radio reconnaissance foot-mobile patrols and signal homing support for tactical recovery of aircraft and personnel operations. The HIDRAH system has a unique design that may be employed independently in a handheld manner or by mounting it to an M16 rifle.

US Army and Marines: Tactical Ground Stations

An improved version of the AN/MLQ-36, used by the Army and Marines, is a multifunction, open-architecture AN/MLQ-36A Mobile Electronic Warfare Support System Product Improvement Program, which is a total replacement of the electronics in the AN/MLQ-36. The MEWSS PIP provides the ability to detect and evaluate enemy communications emissions, detect and categorize enemy noncommunications emissions (i.e., battlefield radars), determine Lines-of-Bearing (LOBs), and degrade enemy tactical radio communications during amphibious assaults and subsequent operations ashore. When mission configured, and working cooperatively with other MEWSS PIP platforms, the common suite of equipment can also provide precision location of battlefield emitters. The system is designed to have an automated tasking and reporting data link to other MAGTF assets such as the AN/TSQ-130 Technical Control and Analysis Center (TCAC) PIP. The MEWSS PIP and future enhancements will provide the capability to exploit new and sophisticated enemy electronic emissions and conduct Electronic Attack (EA) in support of existing and planned national, theater, Fleet, and MAGTF SIGINT/EW operations citation
last = US Marine Corps
title = Marine Corps Warfighting Publication (MCWP) MCWP 3-40.5 Electronic Warfare
publisher = US Marine Corps
date=22 February 1999
url = http://www.fas.org/irp/doddir/usmc/mcwp3-40-5.pdf
accessdate = 2007-10-13
] .

hip Platforms

Ad hoc installations were placed on US warships in the 1940 on. Modern ship installations generally involve intercept stations in mobile vans, which can be put onto the deck of a warship, although some nations, such as Russia and Spain, use essentially unarmed modified fishing vessels.

There is a high level of interoperability among NATO vessels, using the Joint Tactical Information Distribution System (JTIDS). While not all ships have sufficiently secure areas for all-source (i.e., including SIGINT) intelligence sensors, commanders with access to all-source information can distribute appropriate parts to units under their command.

China: Ship Platforms

China operates at least 10 AGI-type vessels.citation
Jane's Defence Weekly 24
date =March 1999
title = Signals Intelligence in China
first = Desmond | last = Ball
url = http://www.afio.com/sections/wins/2001/2001-15.html
]

Denmark: Ship Platforms

Denmark can field one containerised SIGINT/ELINT component, to be fitted in its FLYVEFISKEN class patrol-craftscitation
url = http://www.futura-dtp.dk/FLEET/Skibe/flyvefisken.htm
title = Flyvefisken-klassen PG/MHC/MLC (Standard Flex 300)
]

France: Ship Platforms

France has operated several generations of SIGINT ships, but is moving to its first purpose-built vessel as the third generation. The first, a German cargo ship built in 1958 by a shipyardin Bremen, was transformed in France into an electronic eavesdropping ship between 1976 and 1977.Decommissioned in May 1999, the next generation was a former supply ship used since 1988 by the Nuclear Experiments Department for the Pacific Tests Centre (CEP), the "Bougainville" . For its new mission, it was equipped with SIGINT sensors and a Syracuse II satellite communication system, and has been operating since July 1999. It carried out significant missions in the Indian Ocean following the 9/11/2001 attacks.

On 14 January 2002, the French Ministry of Defense launched a new purpose-built "Intelligence Gathering Auxiliary" ship project called MINREM, and will be named the Dupuy-de-Lôme. scheduled to go into operation in 2005, to replace "Bougainville"Citation
author = Alain Duhamel
coauthor = Michel Masselin,
journal = The French AOC's Newsletter
title = A New Sigint Vessel for France
date=November 2002
url = http://guerrelec.asso.fr/Archives/lettre18UK.pdf
accessdate =2007-10-18
] . Thales is providing the electronics, and Compagnie Nationale de Navigation is building the ship, to requirements defined by the Military Intelligence Directorate (DRM). with a planned 30 year lifetime. Thales is assigning overall systems and COMINT to its Thales Communication division, while Thales Systèmes Aéroportés will do the ELINT.

Germany: Ship Platforms

The German Navy operates the Oste class fleet service ships which are purpose built SIGINT and ELINT reconnaissance ships. Also other Navy vessels, such as the Bremen class frigates, Brandenburg class frigates, Sachsen class frigates and Braunschweig class corvettes are equipped with extensive SIGINT/ELINT gear.

Russia: Ship Platforms

Before and after the breakup of the USSR, the Russian Navy operated a large number of AGI (Auxiliary General Intelligence) intelligence collection "trawlers"citation
last = Shcherbakov
first = Aleksey
title = Major Loss of Intelligence Gathering Capability
date=March 22,1999
url = http://www.fas.org/irp/world/russia/fapsi/shcherbakov.htm
accessdate = 2007-10-08
] .

pain: Ship Platforms

Spain has been reported to have acquired an ex-East German AGI, which it may operate in cooperation with its SIGINT aircraft citation
last = HJH
title = Recycled AGI
journal = ENIGMA 2000 Newsletter
issue = Issue 27
date=March 2005
url = http://www.cvni.net/radio/e2k/e2k027/e2k27agi.html
accessdate = 2007-10-08
] . The vessel concerned is the 1,900 ton renamed "Alerta", In East German service, she had extensive antennas and a large radome. Based in Cartagena, the SIGINT work is reportedly by two Israeli companies and a Spanish firm. A different source says that the SIGINT equipment is Russian. A Saturn 35 satellite antenna has been, according to Spanish sources, added.

weden: Ship Platforms

Sweden operates the HMS Orion and plans to rebuild the HMS Karlskrona as a SIGINT ship. [Citation
url = http://www.aviationweek.com/aw/blogs/defense/index.jsp?plckController=Blog&plckScript=blogScript&plckElementId=blogDest&plckBlogPage=BlogViewPost&plckPostId=Blog%3a27ec4a53-dcc8-42d0-bd3a-01329aef79a7Post%3a9e4b4749-4eb2-4ca1-b9a5-6d64a3ca4358
title=Sweden's Next Spy Ship
author=Joris Janssen Lok
publisher=Aviation Week
date=2007-11-20
accessdate=2008-04-09
]

United Kingdom: Ship Platforms

UK Type 42 and 45 destroyers carry radar and communications intercept receivers for tactical ESM. They also can receive information from NATO and national sensors, via JTIDS.

While it is experimental, see passive covert radar, a MASINT technique, for a system by which a task group of ships, with their radar transmitters off (i.e., under EMCON), to get images of aircraft from reflections either from the other side's radars, or strong television or radar transmitters.

United States: Ship Platforms

After two international incidents, US doctrine is to conduct ship-based SIGINT missions with warships, which can protect themselves as the "Pueblo" and "Liberty" could not. The Gulf of Tonkin incident, in 1964, involved two-destroyer DESOTO patrols equipped with intercept vans, backed up with carrier air patrols. Why this level of protection was not available in 1967 is difficult to understand. One exception, the purpose-built SIGINT auxiliary, the ARL-24 Sphinx, generally stayed off the Nicaraguan coast.

Current USN warships carry some version of the AN/SLQ-32 electronic warfare system, which has ESM capabilities.

In addition to the AN/SLQ-32, Arleigh Burke class destroyers are in the process of evaluating an open-architecture Integrated Radar/Optical Sighting and Surveillance System (IROS3) and Ship Protection system, currently including an AN/SPS-73 radar, an electro-optical/infrared sensor, acoustic sensors and spotlights, coupled with remotely controlled machine guns. citation
title = Navy ISR
work = Sea Power
date=January 2006
url = http://findarticles.com/p/articles/mi_qa3738/is_200601/ai_n17169607/pg_1
accessdate = 2007-10-08
]

Standardized USN systems go beyond simple direction finding and into COMINT. The AN/SLR-25 is a passive cryptologic exploitation system principally for tactical use, but that can make contributions to higher levels of intelligence. The SLR-25(V)1 Advanced Cryptologic Carry-on Exploitation System (ACCES) is a portable version of the SLR-25(V)2 SSEE (Ship Signal Exploitation Equipment) without dedicated SIGINT spaces. Coupled with an AN/SSQ-120 Transportable Radio Direction-Finding system, the ACCES provides a complete SIGINT collection system. The AN/SSQ-120 has HF, VHF, and UHF antennas and direction-finding logic citation
title = Transportable Radio Direction Finding (TRDF) System (AN/SSQ-120)
work = Commerce Business Daily
date=March 22,1999
url = http://fbodaily.com/cbd/archive/1999/03(March)/22-Mar-1999/58sol001.htm
accessdate = 2007-10-08
] .

More capable than the AN/SLR-25 with AN/SSQ-120 is the AN/SSQ-137 Ship Signal Exploitation System, an open-architecture system for command & control as well as intelligence.

ubmarine Platforms

Submarines are the original stealth platforms. When no more than a mast breaks the surface, they immediately become radar targets, so virtually all modern submarines will have the minimum ELINT of a radar warning receiver. Far beyond that, however, many submarines will penetrate hostile areas, raise SIGINT receiver masts, usually with some type of radar-observant covering, and listen. Especially sophisticated SIGINT submarines may tap undersea cables.

The minimum radar-warning receiver is usually a set of spiral antennas, backed with resonant cavities, whose amplitude can be compared to determine the direction of greatest signal strength. To go to the next level of sophistication, phase is considered as well as amplitude, and interferometry adds further information.citation | last = Friedman
first = Norman
title = Up Periscope, Up Antenna: Hunter-Killer Submarines increasingly are Hunter-Gatherers of Intelligence
work = Journal of Electronic Defense
publisher = Harpoon Waypoint
url = http://www.harpoonhq.com/waypoint/articles/Article_042.pdf
id = Friedman2003 | accessdate = 2007-10-08
] .

Australia: Submarine Platforms

Australia's Collins class has a SIGINT mission, emphasized when the vessels' combat system was replaced with an open-architecture surveillance system. Among the systems are the ArgoSystems/Condor AR-740.

Canada: Submarine Platforms

Canada's acquisition of reconditioned British diesel-electric submarines (ex-Upholder class, now Victoria-class submarine) raised eyebrows of many analysts, wondering how these could have a strategic effect given the strength of Canada's southern neighbour's undersea strength. Writing in the "Canadian Military Journal", an officer of Canada's maritime forces gave some subtle insights, of which submarine intelligence capabilities play a significant role citation
last = Craven
first = Michael
title = A Rational Choice Revisited -- Submarine Capability in a Transformational Era
journal = Canadian Military Journal
date = Winter 2006-2007
url = http://www.journal.forces.gc.ca/engraph/Vol7/no4/PDF/05-craven_e.pdf
pages = 21-32
accessdate =
] . "However, submarines also have a contribution to make in deterring and countering the asymmetric threats that now preoccupy Canadian/US (CANUS) planners. This is centered upon Intelligence-gathering, Surveillance, and Reconnaissance (ISR) activities...possession of submarines admits Canada to that exclusive group of states participating in regulated and highly classified submarine waterspace management and intelligence-sharing schemes. The intention to re-establish a Pacific submarine presence led to the immediate cooperation of the United States in development of a west coast Waterspace Management Agreement with Canada, whereas none existed previously. Likewise, Arctic transits and deployments by allied submarines are generally first signalled when Canada’s Atlantic Submarine Operating Authority is advised of foreign submarine movement across 70 degrees North latitude. Taken together, these various factors result in a capability of strategic importance in so much as it exponentially expands the range of coercive options available to decision-makers."

As part of the upgrade of the Upholder-class submarine purchased from the UK, the Litton Marine Guardian Star is on the Victoria-class submarines.

Chile: Submarine Platforms

An ARGOsystems/Condor AR-900 is aboard the French-built Chilean Scorpene-class submarines.

China: Submarine Platforms

Israeli Elbit provides the TIMNEX 4 CH ELINT/targeting set, which covers 2-18 GHz, provides radar warning, and 1.4 to 5 degree DF (depending on frequency). citation
last = Fisher
first = Richard Jr.
title = Growing Asymmetries in the China-Japan Naval Balance
publisher = International Strategy & Assessment Center
date=November 22nd, 2005
url = http://www.strategycenter.net/research/pubID.83/pub_detail.asp
accessdate = 2007-10-08
] .

Denmark: Submarine Platforms

Danish subs have the UK Racal/Thales Sea Lion precision DF system.

Egypt: Submarine Platforms

Egyptian submarines use ArgoSystems/Condor AR-700 series SIGINT for targeting their Harpoon missiles.

France: Submarine Platforms

Older French export submarines came with the Thales/Thompson-CSF X-band radar warning system, which is a manual analog system. The digital replacement, in French service, is the ARUR-13. It is reasonable to expect continuing upgrades from the EADS consortium.

Germany: Submarine Platforms

German submarines use multiple SIGINT systems. Most basic is the DR3000U, although the Type 206 submarines replaced it with the Ginny. The newer Type 212 submarines use FL 1800U units made by the German-French EADS consortium. These units use four spiral antennas and a radar warning receiver under a common dome, with the ELINT function covering 0.5-18 GHz in five bands. This can achieve 5-degree direction finding.

EADS (formerly DASA) also equips German submarines with the Telegon 12 HF interception and DF suite.

Greece: Submarine Platforms

Greece uses the ArgoSystems/Condor AR-700 series of submarine ELINT/ESM for targeting Harpoon missiles.

Italy: Submarine Platforms

Older submarines use an Elettronica BLD-727 DF, but the newer Type 212s will use German SIGINT.

Israel: Submarine Platforms

German-built Dolphin submarines in Israeli service have several missions, SIGINT being one of them. Domestic Elbit makes the TIMNEX 4 CH ELINT/targeting set, which covers 2-18 GHz, provides radar warning, and 1.4 to 5 degree DF (depending on frequency).

Netherlands: Submarine Platforms

For Harpoon targeting, the Netherlands uses the ArgoSystems/Condor AR-700 series SIGINT.

Russia: Submarine Platforms

Akula and Oscar attack submarine have Rim Hat (NATO designation) Nakat-M SIGINT, which is integrated with a Snoop Pair search radar.

Kilo export diesel-electric submarines have the NATO Squid Head/MRM-25 ESM, which includes IFF.

outh Africa: Submarine Platforms

The domestic Avitronics firm installs the Shrike ESM system, covering 2-18 GHz, as does the Israeli Elbit TIMNEX 4 CH ELINT/targeting set, which provides radar warning, and 1.4 to 5 degree DF (depending on frequency). The CelsiusTech-Grintek Ewation partnership probably will provide systems as well.

outh Korea: Submarine Platforms

These have GTE/Israeli SIGINT.

pain: Submarine Platforms

Spanish boats have the domestically produced Indra BLQ-355, which may have been exported. With its participation in the EADS consortium, Spain obtains access to new technologies. Spain appears to be developing a coordinated SIGINT approach using submarine, ship, and aircraft platforms.

weden: Submarine Platforms

For Harpoon targeting, Sweden uses the ArgoSystems/Condor AR-700 series SIGINT.

Taiwan: Submarine Platforms

Israeli Elbit provides the TIMNEX 4 CH ELINT/targeting set, which covers 2-18 GHz, provides radar warning, and 1.4 to 5 degree DF (depending on frequency).

United Kingdom: Submarine Platforms

EADS (formerly DASA) also equips British submarines with the CXA(2) HF interception and DF suite. Racal/Thales makes the UAP precision DF system.

Several submarines have a COMINT system made by US Southwest Research, under the US code name CLUSTER SENTINEL, probably a joint US-UK effort. Beyond NATO interoperability including JTIDS Link 16, it can reasonably be assumed that the UKUSA partners closely coordinate submarine SIGINT, except, of course, with New Zealand, which does not operate submarines.

Britain's new Astute class parallels the US Virginia class of next-generation submarines. Both are avoiding hull penetrations for periscopes and antennas, preferring controlled buoys or separate masts, both with optical fiber for information transfer. ESM gear for this series is UK-designed and US-built.

United States: Submarine Platforms

Under the code names HOLYSTONE, PINNACLE, BOLLARD, and BARNACLE, began in 1959, US submarines infiltrated Soviet harbors to tap communications cables and gather SIGINT. They also had a MASINT mission against Soviet submarines and missiles. The program, which went through several generations, ended when compromised, by Ronald Pelton, in 1981.citation
title = The U.S. Intelligence Community
first = Jeffrey T. | last = Richelson
publisher = Ballinger
year = 1989
chapter = Chapter 8: Signals Intelligence
url = http://jya.com/usic08.htm
]

US submarines infiltrated the territorial waters of potential opponents to raise low-observability antennas and collect radio SIGINT US. submarines made extensive clandestine patrols to measure the signatures of Soviet submarines and surface vessels. cite book
last = Sontag
first = Sherry
authorlink =
coauthors = Christopher Drew, Annette Lawrence Drew
title = Blind Man's Bluff: The Untold Story of American Submarine Espionage
publisher = Harper Torch
year=1999
url = http://www.amazon.com/Blind-Mans-Bluff-Submarine-Espionage/dp/006103004X
isbn = 006103004X
] Various submarines, including the "USS Parche" and "USS Halibut", from the early seventies onwards, reportedly tapped Soviet copper and optical undersea cables, using divers, probes from the main vessel, or remotely operated vehicles. citation
title = Submarine cable interception
work = Political and Social Issues in Digital Interactive Media: Lecture 4 - the Big Brother on Menwith Hill
publisher = Talinn University
date =
url = http://akadeemia.kakupesa.net/arhiiv/PSI/lectures/l4_echelon
accessdate = 2007-10-05
]

While the Sturgeon class submarines have been retired, as with any class of submarines, their design had tradeoffs. Sturgeons were more optimized for reconnaissance than the subsequent Los Angeles class, which have greater speed, but less internal space, and optimized for blue water, principally antisubmarine, missions. They used the AN/WLQ-4 "Sea Nymph" SIGINT system, which may have been too large to fit the Los Angeles class. The Sturgeon class submarine "Parche" (SSN-683) received an addition convert|100|ft|m|-1|sing=on hull extension containing "research and development equipment" that brought her total length to convert|401|ft|m|0. Of the three-vessel "Seawolf" class, the "Jimmy Carter" also is of extended length, presumably for intelligence systems and special operations. Seawolf and Los Angeles classes were directed at a Soviet threat, so the newer Virginia class has additional capabilities for the littoral environment.

Los Angeles class submarines have modernized and smaller ELINT, the AN/WLR-18 "Classic Salmon" for lower frequencies and the AN/WSQ-5 "Cluster Spectator" for higher frequencies. The latter is in a series of code names suggesting it is for tactical use, while the former name is more associated with strategic systems, especially for intelligence. Newer submarines have an AN/WLR-8 radar signal analyzer and an AN/WLR-10 (or AN/BLR-15) radar warning receiver. There are variants, among the classes, of a radar antenna, interferometric direction finder, COMINT receiver.

All US submarines, as new construction on the Virginia class submarines and retrofitted to the Improved Los Angeles class submarines and possibly Seawolfs, will receive an upgraded Electronic Support suite, designed as a minimally manned, passive receiving system capable of detection, acquisition, identification, and localization of a variety of signals of interest Citation
last = Fages
first = Malcolm I
title = Statement to Senate Armed Services Committee Seapower Subcommittee on Submarine Warfare Systems for the 21st century
date=23 March 2000
url = http://www.navy.mil/navydata/testimony/seapower/fages000323.txt
] . ES contains the AN/BLQ-10 SIGINT system, which gives detection, emitter location and MASINT identification, direction finding, and strategic intelligence support. It was first implemented in 2000 and should be in all US submarines by 2012 Citation
title = Navy ISR
newspaper = Sea Power
date=January 2006
url = http://findarticles.com/p/articles/mi_qa3738/is_200601/ai_n17169607/pg_1
] .

ES is not limited to the AN/BLQ-10 alone, but a major improvement in receiving, with an expected 200% improvement in performance with the Type 18I periscope and Integrated Electronics Mast (IEM), especially in the littorals. Completing the current ES concept is the AN/ULR-21 CLASSIC TROLL system that increases the probability of SIGINT intercept by 500%, supporting tactical and national requirements.

Aircraft Platforms

A wide range of aircraft were used with low-tech aircraft such as the WWII [B-24] with temporarily mounted electronics, to platforms extensively modified for the mission, and evolved to strategic RC-135 and EP-3E Aries II aircraft.

Argentina: Aircraft Platforms

After its experience in the Falklands, Argentina had a 707 converted to an ELINT aircraft by Israel.

Australia: Aircraft Platforms

Australia has ordered the Wedgetail 737 AWACS from a Boeing-led team.

Chile: Aircraft Platforms

Chile has a full Israeli Phalcon system on a single 707 airframe. This system provides SIGINT as well as airborne radar warning and control.

China: Aircraft Platforms

Prof. Desmont Ball identified Chinese the first major airborne SIGINT platforms as the four-turboprop EY-8, a variant of the Russian An-12 'Cub' as China's main ELINT and reconnaissance aircraft a decade ago. EY-8 construction may be continuing for ELINT/SIGINT and electronic warfare missions. This capability, however, is much inferior to the Japanese equivalents. citation
last = Fisher
first = Richard Jr.
title = Growing Asymmetries in the China-Japan Naval Balance
publisher = International Strategy & Assessment Center
date=November 22nd, 2005
url = http://www.strategycenter.net/research/pubID.83/pub_detail.asp
id = Fisher2005
accessdate = 2007-10-08
] . They were supplemented or replaced four locally modified Tu-154Ms, comparable to the Russian 1980s vintage Il-20 ELINT aircraft.

France: Aircraft Platforms

France operates the C-160 aircraft twin-turboprop tactical transport, due to be replaced by the C-160 by the Airbus Military A400M transport when that enters service from 2009. The French Air Force will begin retiring its fleet of C-160 transports in 2005. Gabriel SIGINT versions of the Transall are an upgraded electronic surveillance version in service with the French Air Force, which also operates four Astarte strategic communications relay versions. Thales developed the signals intelligence (SIGINT) system for which there are 10 workstations in the main cabin [Citation
title = C-160 Transall Cargo Aircraft
journal = Airforce-technology.com
id = Transall
url = http://www.airforce-technology.com/projects/transall/
accessdate = 2007-10-26
] . C-160 fleets of France, Germany and Turkey will be replaced by the Airbus Military A400M transport when that enters service from 2009. The French Air Force will begin retiring its fleet of C-160 transports in 2005.

Originally manufactured by the companies MBB, Nord Aviation and VFW formed the Transall group in 1959 for the development and production of the C-160 for the air forces of France, Germany, South Africa and Turkey. Production of the aircraft by the three companies ended in 1972, with 169 aircraft having been delivered. In 1976, responsibility for production of the aircraft was given to Aerospatiale in France and MBB (now DaimlerChrysler Aerospace) in Germany. Both companies are now part of EADS (European Aeronautics Defence and Space). Production of the aircraft from 1976 to 1985 included updated avionics, a reinforced wing housing and additional fuel tanks.

French Transalls were upgraded in 1999, with a new head-up display and an upgraded electronic warfare suite, with a radar warning receiver, missile approach warner and chaff and decoy dispensers. Navigational systems include EFIS 854 TF Electronic Flight Instrumentation System, which includes an Electronic Attitude Director Indicator (EADI) and Electronic Horizontal Situation Indicator (EHSI). Three new sensors have been installed for aircraft position and attitude control: an inertial reference unit (IRU), an attitude and heading reference unit (AHRU), and a global positioning system (GPS). A flight management system with two Gemini 10 computers and a new radio management system have also been installed.

The Transalls provided NATO SIGINT in Bosnia citation
author = Wentz, Larry
title = Lessons From Bosnia: The IFOR Experience, IV. Intelligence Operations
url = http://www.fas.org/irp/ops/smo/docs/ifor/bosch04.htm
accessdate = 2007-10-26
] .

For a number of years, France operated DC-8 aircraft "Sarigue" dedicated to ELINTCitation
title = Douglas DC-8 Sarigue NG
journal = The Spyflight Website
url = http://www.spyflight.co.uk/db8.htm
accessdate = 2007-10-18
] . A reengined version, Sarigue-NG, went into service in 2000. The name stands for Systeme Aeroporte de Recueil d’Informations de Guerre Electronique (Airborne Electronic Warfare Information Gathering System) and also is the French word for Opossum, a shy and retiring animal. The updated aircraft was known as the SARIGUE-NG, with the NG standing for Nouvelle Generation or New Generation. Both DC-8s had a SIGINT system from Thompson-CSF, and operated in the Baltic, Mediterranean, French Africa, and during Desert Storm and NATO Kosovo operations.

It had a distinctive sideways looking airborne radar (SLAR) in a "canoe" under the fuselage, as well as large rectangular antenna arrays at each wingtip.

The aircraft was fitted with equipment developed by Thompson-CSF, similar to that installed in the earlirt Transall Gabriels. It is believed that the aircraft operated with a 24 man crew and as well as COMINT and SIGINT duties, it could even intercept mobile phone calls. Operated by the French Air Force on behalf of the armed forces and security services, it was seen in the Baltic, Mediterranean and French Africa, as well as being used in support of coalition operations during the Gulf War and NATO peace keeping operations in Kosovo.

On 19 Sep 2004, it was reported that in addition to a 50% cost overrun on an electronics upgrade by Thales, the weight of the new upgrade violated safety limits. The French Defence Minister confirmed the Sarigue would be retired because of ‘high operating costs’. An Airbus replacement for the DC-8 was considered and rejected.

Germany: Aircraft Platforms

During NATO operations in Bosnia, Germany operated four SIGINT version of the French-German Atlantique patrol aircraft.

Germany has selected a UAV platform for SIGINT, the EuroHawk version of the U.S. Air Force RQ-4 Block 20 Global Hawk. The aircraft is made by Northrop Grumman, with the airborne and ground station equipment from EADS. As with Global Hawk in the US, EuroHawk is approved to operate, unmanned, in the same airspace as commercial aviation. Five EuroHawks have been ordered so far, as a replacement for Germany's aging fleet of Breguet Atlantiques . [cite web
last = Northrop Grumman
title = Northrop Grumman, EADS Joint Venture Awarded $559 Million to Develop German Euro Hawk
date=February 1, 2007
url = http://www.irconnect.com/noc/press/pages/news_releases.html?d=112873
id = EuroHawk-NG
accessdate = 2007-10-08
] .

Israel: Aircraft Platforms

Israel is reported to have converted at least four Boeing 707 aircraft, codenamed Re'em (Antelope) and based at Lod to an electronic warfare role, two for countermeasures and twp or more for SIGINT. An indicator of an ELINT role is the presence of a cheek-antenna array externally similar to the AEELS (Automatic ELINT Emitter Locating System) on the RC-135U/V/W. These aging aircraft are due for replacement, probably by Gulfstream G500 executive jets.

The aircraft are known as Re'em (Antelope) and are operated by 134 Tayeset at Lod. Some other IAF 707s are possibly configured for AAR/SIGINT operations. Israel is currently looking for up to 9 dual role aircraft to replace their 707’s and will purchase a number of Gulfstream G500s.

India: Aircraft Platforms

India appears to have a single 707 ELINT aircraft.

Mexico: Aircraft Platforms

The Mexican Air Force has 2 Embraer P-99s and 1 Embraer R-99A. The R-99A is an Airborne Early Warning & Control aircraft AWACS equipped with the Erieye airborne radar from Ericsson AB of Sweden. The P-99 is the maritime patrol version of the R-99.It retains many of the C3I and ELINT capabilities of the R-99B.

Russia: Aircraft Platforms

Russian aircraft with SIGINT capability include the Tupolev Tu-142M-Z "Bear", the Beriev A-50 "Mainstay" (based on the Ilyushin 76 airframe) and the IL-38 "May" maritime patrol aircraft operate from bases in Syria, Al Anad Air Base and Khormaksar International Airport in South Yemen, and San Antonio de Los Banos and Jose Marti airbase in Cuba.

audi Arabia: Aircraft Platforms

Several 707 derivatives, originally used as KE-3 tankers, are being converted to two models of SIGINT suites by E Systems. Later versions are on the E-6 modification of the Boeing 707, the E-6 used by the US as a TACAMOcommand and control aircraft.

According to the US Department of Defense, the Tactical Airborne Surveillance System and upgrades will be installed on Saudi E-3 and E-6 aircraft. The estimated cost is $350 million [Citation
last = DefenseLink
title = Memorandum for Correspondents
date=September 5, 1996
year = 1996
url = http://www.defenselink.mil/news/Sep1996/m090596_m197-96.html
accessdate = 2007-10-08
] .

outh Africa: Aircraft Platforms

Again with modified 707 aircraft, South Africa now operates 3 aircraft, apparently using the Israeli cheek antennas similar to the AEELS (Automatic ELINT Emitter Locating System) on the RC-135U/V/W.

These are expected to be replaced with Airbus 400 aircraft [Citation
last = The SAAF Forum
title = A400M deal signed
date=April 28, 2005
year = 2005
url = http://www.saairforce.co.za/forum/viewtopic.php?t=140
accessdate = 2007-10-08
] .

pain: Aircraft Platforms

Spain operates a single 707 variant, modified by Israel and equipped with Israeli and Spanish electronics. As well as an Elta EL/L-8300 SIGINT system,citation
url = http://www.janes.com/extracts/extract/jrew/jrew1088.html
title = EL/L-8300 (Israel), AIRBORNE SIGNALS INTELLIGENCE (SIGINT), ELECTRONIC SUPPORT AND THREAT WARNING SYSTEMS
journal = Jane's Radar and Electronic Warfare Systems
date =July 12, 2007
] In the baseline version, this multi-operator Elta system contains 0.5 to 18 GHz ELINT (0.03 to 40 GHz as an option), 20 to 1,000 MHz (2 to 1,500 MHz as an option) COMINT, and control and analysis sub-systems.

In addition to the SIGINT payload, the aircraft has a Tamam Stabilised Long Range Observation System (LOROS) high-resolution TV camera and recording systems.citation
url = http://www.iai.co.il/Default.aspx?FolderID=18688&lang=en
title = Electro-optical payloads
] The SLOROS is reported to have a range of at least 62 miles (100km).

The aircraft has been reported around the western edge of North Africa, the Western Sahara and the Mediterranean.

weden: Aircraft Platforms

The Swedish Air Force operates the S-102B Korpen aircraft which is a modified Gulfstream G-IV business jet.

Turkey: Aircraft Platforms

Turkey has 6 C-130B ELINT aircraft,

United Kingdom: Aircraft Platforms

The British Nimrod R is a variant of a maritime patrol aircraft, but with exceptionally high speed, in-flight refueling capability, and long loiter time. Its sensors cover the tactical to strategic spectrum. It is reported to have a SIGINT suite from Thales.

UK E4D AWACS also have SIGINT capability.

United States: Aircraft Platforms

Some platforms considered strategic, including the P-3 and RC-135 RIVET JOINT aircraft, may be assigned in support of large tactical units. There are both MASINT and SIGINT versions of the RC-135, the best-known SIGINT variant being the RC-135V/W RIVET JOINT.

United States: Tactical Aircraft Platforms

In the 1950s and 1960s, SIGINT personnel flew aboard Navy EA-3B aircraft. As a result of ASA casualties during ground SIGINT in Vietnam, ASA developed its own fleet of tactical SIGINT aircraft, starting with the U-6 Beaver. The reconnaissance mission for these aircraft was indicated with an "R" prefix, hence RU-6. Beavers, however, had poor capabilities. The RU-1 Otter had more built-in SIGINT equipment, but the first purpose-built Army SIGINT aircraft was the RU-8D Seminole, which had a Doppler navigation system and wing-mounted direction-finding equipment, although SIGINT operations still required much manual work. Some RU-8D aircraft had MASINT sensors for categorizing specific transmissions. Especially with tactical aircraft, there was a gap between the knowledge of SIGINT personnel and the understanding of warfighters. For example, end users often expected a direction-finding fix to be a point, rather than an area of probability.

In 1968, the next tactical improvement was the RU-21 LAFFIN EAGLE and the JU-21 LEFT JAB, the latter being the first with computerized direction finding and data storage. Even more advanced ASA equipment was on P-2V aircraft borrowed from the Navy, and called CEFLIEN LION or CRAZY CAT platforms.

During the Vietnam era, six UH-1 helicopters were converted to SIGINT platforms, called EH-1 LEFT BANK aircraft and operated in direct support of combat aircraft.

US tactical SIGINT aircraft include the EH-60A Quickfix helicopter, which has interception capabilities in the 1.5-150 MHz and direction finding between 20-76 MHz. The EH-60L has better communications and ungradability than the A model, with the AN/MSR-3 TACJAM-A system [cite web
last = Pike
first = John
authorlink = John E. Pike
title = EH-60L Advanced Quick Fix
url = http://www.globalsecurity.org/military/systems/aircraft/eh-60l.htm
accessdate = 2007-10-06
] . RC-21 Guardrail aircraft provide a corps-level ESM capability, with the unusual approach of putting all the analysis equipment on the ground, with the RC-12K/N/P/Q aircraft acting purely as intercept and relay platforms. The Guardrail aircraft normally fly in units of three, to get better cross-bearings in direction-finding.

The Navy EA-6 replaced the USAF EF-111 EW aircraft for all services, and the EA-6 is being replaced by the EF-18G Growler. All EW aircraft have some ELINT capability if for no other reason than targeting.

Naval MH-60R helicopters have AN/ALQ-210 ESM suites.

United States: Strategic Aircraft Platforms

The most common aircraft used in a strategic role by US allies are Boeing 707 conversions for the lower-budget, lower-capability installations, and Boeing 767 conversions for the higher-end. Gulfstream executive jets are another platform of interest. The US military is considering, as its aircraft age, replacing with variants on the foreign platforms, often built on US-made aircraft.

Some features are common to multiple countries, such as a pair are two "chipmunk cheek" bulges containing SIGINT antennas. There is a US made set used on the RC-135V and RC-135W Rivet Joint aircraft. A US-made variant, reported to have internal differences, is used by Saudi Arabia. A third variant, with a similar appearance, but of Israeli manufacture, are used by Israel and South Africa. In no case, however, are these the only SIGINT antennas on the aircraft Citation
title = The Spyflight Website
date=1 Jan 2007
url = http://www.spyflight.co.uk/boeing707.htm
accessdate = 2007-10-09
] .

Dedicated RC-135 aircraft, operated by the US Air Force, are in a variety of SIGINT and MASINT configurations. An effort is underway to develop a standard RC-135 open architecture, allowing at least some of the aircraft to be quickly reconfigured. RIVET JOINT is the most common SIGINT type.

On the long-range Navy P-3 maritime surveillance aircraft is the AN/ALR-66B(V)3 ELINT/MASINT system targeted against radars. Major improvements are an improved direction-finding antenna and an EP-2060 pulse analyzer. The dedicated SIGINT EP-3 uses a JMOD (Joint Airborne SIGINT Modification) program to a JMOD common configuration (JCC).

Raytheon developed the SIGINT package for the Global Hawk UAV. Boeing has proposed a SIGINT variant of the P-8 multimission maritime patrol aircraft it has under development. Raytheon and Northrop Grumman would be the partners for the actual SIGINT electronics. citation
title = P-8A Poseidon
url = http://www.boeing.com/defense-space/military/p8a/index.html
author = Boeing Integrated Defense Systems
]

Boeing also has built a "Wedgetail 737" for Turkey, and appears to be marketing this as an alternative to the lower-end systems being built for business jets such as the Gulfstream. citation
url = http://www.airforce-technology.com/projects/737aewc/
title = 737 AEW&C Wedgetail
journal=Air Force Technology
] Australia also has ordered this aircraft.

atellite Platforms

The US launched the first SIGINT satellites, followed by the Soviets. Recently, however, the French have been launching intelligence satellites, on French and Russian rockets, and are exchanging information with the Germans and Italians, both of which are deploying synthetic aperture radar MASINT constellations, with an undefined IMINT or electro-optical MASINT capability on the Italian satellites.

Additional nations have launched IMINT satellites; SIGINT seems to be a lesser priority, with radar MASINT often a higher priority. There are a number of bilateral agreements for satellite cost and intelligence sharing.

European Military Space Policy

European nations deal with a complex set of issues in developing space-based intelligence systems. Many of the operational and proposed systems have bilateral information sharing agreements, such as France providing ELINT to its radar MASINT SAR and its IMINT partners. SIGINT capability, however, is fairly rare, with France in the Western European lead.

Quite a number of issues are driving European needs for intelligence policy. During the 1991 Gulf War, France's dependence on US assets convince it that it needed its own, or at least European, space-based intelligence. Balkan operations and both dependence on US assets, and exclusion from certain information, further pushed the desire, although the topmost levels of government had not yet been convinced.

In 1998, a British-French meeting in St. Malo, France, produced a declaration that the EU needed "a capacity for analysis of situations, "sources of intelligence, and a capability for relevant strategic planning" (emphasis added). This was a major change in British policy toward the EU, in that Britain had wanted the EU to stay out of defense issues, leaving them to NATO. At a 1999 meeting in Cologne, Germany, while Kosovo was being bombed by NATO, the EU leadership repeated the St. Malo declaration, including having EU military forces not dependent on NATO. They also called for " the reinforcement of our capabilities in the field of intelligence/"

WEU/EU Military Force

At a Helsinki meeting in December 1999 and a followup meeting in Sintra, Portugal on February 2000, there was agreement on a 15 brigade multinational corps with air and naval support, ready by 2003. European defense policy called for three new bodies that would need intelligence support: a Political and Security Committee composed of ambassadors with an advisory role to the EU Council of Ministers, a Military Committee of senior officers, and a Multinational Planning Staff. There was additional consensus on merging the WEU into the EU

WEU has concentrated on IMINT, which is increasingly less sensitive than other intelligence disciplines due to the availability of commercial imagery. The WEY headquarters does have an Intelligence Section that produces finished intelligene for the member states, within the capabilities of a staff of six.

European Union Satellite Center

In May 1991, however, the WEU ministers agreed to create the European Union Satellite Center in Torrejón de Ardoz, which became a permanent center in May 1995. The Center neither owns nor operates any satellites, but buys and analyzes commercial imagery. This is not wildly dissimilar to the way the US has the National Reconnaissance Office to launch and operate satellites, with the National Geospatial-Intelligence Agency (NGA) analyzing the imagery. It should be stressed that the Torrejon center deals only with IMINT and possibly SAR and multispectral MASINT. It does not receive information directly from satellites, but from their operators.

The center contributed to planning with reference to situations in the Balkans and Africa in the mid-1990s. Up to May 13, 1997, the Center was only allowed to study an area after the WEU council agreed that an area was in crisis. After that date, they received a "general surveillance mission" and permission to build databases.

Bosnian operations continued to point out dependency on the US for C4I. The balance between building European capability without duplicating NATO remained an issueGerman SIGINT units that were part of the French-led Multinational Division (MND) in Bosnia provided intelligence to the division-level French headquarters.

haring the more sensitive disciplines

The biggest problem in joint intelligence is sharing, especially the now more-sensitive SIGINT, HUMINT, and MASINT. The next largest is damage to bilateral relationships, especially with the US. Not all EU nations have the traditional French priority for autonomy. It is not clear how far other European nations, especially the six that are in the NATO but not the EU, are willing to cooperate. Turkey suggested that if it cannot be involved in EU policy, it might work to block EU access to NATO. Norway also expressed concern over the St. Malo declaration, and in February 2000, British officials spoke about a proposal that the EUtake on collective defense, that still being a NATO responsibility [Citation
author = Villadsen, Ole R.
title = Prospects for a European Common Intelligence Policy
date = Summer 2000
journal = (CIA) Studies in Intelligence
id = Villadsen 2000
url = https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/csi-studies/studies/summer00/art07.html
accessdate = 2007-10-20
] .

European Space Council and current concerns

In 2004, the European Space Council was formed, although it is still struggling with dual-use issues, and the relationships with NATO and US policy. Complicating matters is that the European Space Agency (ESA) is new in non-civilian applications.

Should Europe proceed on its security objective, a policy needs to be defined that will not jeopardize the peaceful application Citation
author = Johnson, Rebecca E.
title = Europe's Space Policies and Their Relevance to ESDP
date=28 March 2007
journal = Red Orbit
url = http://www.redorbit.com/news/space/883287/europes_space_policies_and_their_relevance_to_esdp/index.html?source=r_space
accessdate = 2007-10-20
] . This needs to happen without creating a false firewall with military activities, as the US created NASA as an ostensibly civilian-only organization, deliberately picking a civilian, Neil Armstrong to put the first footprint on the Moon.

China's anti-satellite (ASAT) test in 2007 concerned ESA, as debris from the test has produced numerous near-misses of other satellites. ESA also suggested it might work on a data relay satellite such as TDRSS, which is dual-use. Some of its present communications projects are dual use.

Next Generation

A pointer to the direction is whether there will be consensus on a next-generation European system of IMINT and radar MASINT satellites. A proposal in process is to generate the Multinational Space-based Imagery System for Surveillance, Reconnaissance, and Observation (MUSIS). The participants are Belgium, France, Germany, Greece, Italy and Spain. EADS Astrium and Thales Alenia Space are competing, under the direction of the French defense procurement agency, DGA. This system could be operational somewhere around 2015-2017, around the time that the French Helios and joint French-Italian Pleiades IMINT satellites need replacement. The German SAR Lupe and Italian CosmoSkyMed radar satellites will last up to 2017 or 2018.Citation
author = Wall, Robert
coauthor = Michael A. Tavernan
title = France Steps up European Milspace Push
date=September 24, 2007
journal = Aviation Week & Space Technology
id = Wall 2007
url = http://www.aviationweek.com/aw/generic/story_channel.jsp?channel=defense&id=news/aw092407p2.xml
accessdate = 2007-10-20
]

Belgium: Satellite Platforms

Belgium is a financial partner in the French Helios 2 IMINT satellite system. French Essaim ELINT satellites were launched with Helios 2A. It has not been announced if Spain, as a Helios 2 partner, will have access to French Essaim ELINT.

Belgium is a MUSIS partner, which should be considered in assessing the potential of information sharing among the partners.

France: Satellite Platforms

John Pike states the Socialist government, elected in May 1981 and led President François Mitterand were unknown at the time of his election in May 1981 marked the attempt to put SDECE under civilian controlcite web
author = Pike, John
last = Pike
title = DGSE - General Directorate for External Security (Direction Generale de la Securite Exterieure)
ID = PikeFrenchSIGINT
url = http://www.globalsecurity.org/intell/world/france/dgse.htm
accessdate = 2007-10-06
] . In June 1981, Stone Marion, a civilian who was the former Director of the Paris Airport, was named to the head of the SDECE but met with opposition, as a socialist and civilian, from inside SDECE.

France and Britain had both been facing both the desirability and cost of intelligence satellites independent of the US. In the mid-1980s, with the development of the Ariane launcher and its associated large launch complex in French Guiana, the French liked the idea of such independence. Planning started on French IMINT satellites called Helios, a radar imaging satellite called Osiris and then Horus, and a SIGINT satellite to be called Zenon when operational. France would launch technology demonstrators before a fully operational SIGINT satellite. France began its intelligence satellite program with Helios IMINT satellites, although they also planned on Horus (first called Osiris) radar MASINT and Zenon ELINT platforms.

France, still desiring to have three different space-based intelligence systems (IMINT, radar surveillance, SIGINT), had to face extremely high costs. In 1994-1995, French legislators tried to reduce some of these plans. In response, the French government sought Italian and Spanish funding in, and cooperation with, the HELIOS 1 program. They also sought German involvement in Helios 2.

Two first-generation Helios satellites, with 1-meter optical imaging resolution and no infrared capability, were launched in 1995 and 1999. Helios 1 was an Italian-Spanish. Helios 2 is a French–Belgian–Spanish partnership.

On 18 December 2004, [Citation
author = Malik, Tariq
title = Ariane 5 Successfully Orbits France's Helios 2A Satellite
id = Malik 2004
date=18 December 2004
url = http://www.space.com/missionlaunches/ariane5_helios_launch_041218.html
accessdate = 2007-10-19
] Helios 2A, built by EADS-Astrium for the French Space Agency (CNES), was launched into a Sun-synchronous polar orbit at an altitude of about 680 kilometers. There it will serve the French defense ministry, as well as cooperating European countries. Helios 2B is scheduled for launch in 2008.

The same launcher carried French and Spanish scientific satellites and four Essaim ("Swarm") experimental ELINT satellites [Citation
author = McDowell, Jonathan
title = Jonathan's Space Report No. 541: Helios 2
id = McDowell 2004
date=25 December 2004
url = http://www.planet4589.org/space/jsr/back/news.541
accessdate = 2007-10-19
] . Sources in the French procurement agency, DGA, confirmed Essaim, a system of ground station and satellite constellation, is working well. Citation
first = Peter B. | last = de Selding
title = ESSAIM, Micro-Satellites In Formation
journal = Space News Business Report
date=21 March 2005
url = http://www.aboutspace.com/spacenews/archive05/Milcheck_0321.html
accessdate = 2007-10-19
] .

DGA, the French military procurement agency, announced that the constellation of four Essaim ELINT satellites launched with Helios 2A on 18 December 2004 would begin operations in May 2005. Essaims operate in a linked system of three active satellites with an in-orbit spare. There is one active earth station, with two due to follow.

Essaim is a third-generation technology demonstrator with some operational capability. A radio propagation experiment, S80-T, was launched in 1992, as a predecessor of the ELINT experiments. The first generation was Cerise, launched in 1995 and damaged in 1996 by a collision with the French SPOT-1 earth resource observing satellite. Clementine, the second generation, was launched in 1999.

Some French defense officials have criticized the DGA for insisting on a third in-orbit demonstrator program after a decade of initial validation with the previous satellites. DGA officials note that Essaim has greater capacity than its predecessors and will provide some operational data. They say Essaim is designed to maintain French expertise long enough to persuade other European governments to join in an operational eavesdropping effort, which France alone cannot afford.

In a Ministère de la Défense 12/18/2004 statement, France announced [citation
author = Office of Science and Technology, French Embassy in the US
title = HELIOS IIA: A New Boost for European Defence
journal = Space News Business Report
id = France 2004
date = 18 December 2004
url = http://www.info-france-usa.org/sst/home/page.asp?target=nfo-let&LNG=us&PUBLID=9&LIVRID=8238
accessdate = 2007-10-19
] that Helios 2A is part of an exchange program planned with the SAR-Lupe and Italian COSMO-SKYMED systems, under development respectively in Germany and Italy.

France is also developing the new generation PLEIADES two-satellite optical dual-use (military-civilian) system. PLEIADES is intended to succeed France's SPOT system is considered part of the Franco-Italian ORFEO (Optical and Radar Federated Earth Observation) programme, being due for launch around 2008-10. France is a MUSIS partner, which should be considered in assessing the potential of information sharing among the partners.

Germany: Satellite Platforms

Germany's SAR Lupe is a constellation fo five X-band SAR satellites in three polar orbits. Following the first successful launch on December 19, 2006, Germany, using a Russian booster, launched the second satellite in its planned five-satellite SAR-Lupe synthetic aperture radar constellation on Citation
author = Space War
title = Successful Launch Second German Sar-Lupe Observation Satellite
journal = Space War
date=July 03, 2007
url = http://www.spacewar.com/reports/Successful_Launch_Second_German_Sar_Lupe_Observation_Satellite_999.html
accessdate = 2007-10-19
] . The second SAR Lupe satellite was launched on July 2, 2007, the third on November 1, 2007, the fourth in March 27, 2008 and the last one on July 22, 2008. The system achieved full operational readiness with the launch of the last satellite.

SAR is usually considered a MASINT sensor, but the significance here is that Germany obtains access to French satellite ELINT.

Germany is a MUSIS partner, which should be considered in assessing the potential of information sharing among the partners.

Greece: Satellite Platforms

Greece is a MUSIS partner, which should be considered in assessing the potential of information sharing among the partners.

Italy: Satellite Platforms

The first CosmoSkyMed (Constellation of small Satellites for Mediterranean basin Observation) went into orbit in June 2007. The second should be launched in late 2007, and the remaining two in 2008-9. According to a Thales executive, Giorgio Piemontese, a followon needs to be planned soon to avoid a gap.

Italy and France are cooperating on the deployment of the dual-use Orfeo civilian and military satellite system [Citation
author = Deagel.com
title = Successful Launch Second German Sar-Lupe Observation Satellite
id = Deagel 2007
date=October 19, 2007
url = http://www.deagel.com/C3ISTAR-Satellites/COSMO-SkyMed_a000256001.aspx
accessdate = 2007-10-19
] .

Orfeo is a dual-use (civilian and military) earth observation satellite network developed jointly between France and Italy. Italy is developing the Cosmo-Skymed X-band polarimetric SAR, to fly on two of the satellites. The other two will have complementary French electro-optical payloads. The second Orfeo is scheduled to launch in early 2008.

While this is not an explicit SIGINT system, the French-Italian cooperation may suggest that Italy can get data from the French Essaim ELINT microsatellites.

Italy plains joint development, with France, of the ORFEO (Optical and Radar Federated Earth Observation) system, to be launched in 2008-10. Italy is a MUSIS partner, which should be considered in assessing the potential of information sharing among the partners.

Russia: Satellite Platforms

The USSR appears to have emphasized ELINT more than COMINT in their space-based SIGINT program. citation
title = Spacecraft: Military: Tselina
url = http://www.russianspaceweb.com/tselina.html
accessdate = 2007-10-19
. After proof-of-concept of an ELINT payload on the first-generation IMINT satellites, the Tselina program was started in 1964, and the first successful launch of the simpler, lower-sensitivity Tselina O was in 1967. The more complex Tselina D first flew in 1970, a more complex Tselina D spacecraft started flying. Both versions flew until 1984, when the Tselina D was set up in a constellation of 6 satellites.

Both Tselina O and D versions were flying side by side until 1984, when Tselina O subsystem was abandoned and its functions integrated into those conducted by the Tselina D spacecraft. As the Western observers noted, the Tselina D spacecraft, known in the West as the "heavy ELINT," would orbit the Earth in groups of six satellites spread 60 degrees apart in their orbits.

Requirements for the Tselina-2 series were issued in 1974, with a first test launch scheduled for 1980 and full operational capability in 1982. Requirements grew until the Tselina-2 was too heavy for the Tsyklon-3 booster, and the program was switched to the Zenit booster in development. With the capacity of the Zenit, additional capabilities were added, including telemetry through relay satellites.

On April 27, 1979, the Military Industrial Commission, VPK, officially approved the Zenit as a launcher for the Tselina-2 satellite. The VPK scheduled the beginning of flight tests for the 2nd quarter of 1981. The first Tselina-2 blasted off in September 1984 under official name Cosmos 1603 and declared operational in 1988.

Tselina-2 system was declared operational in December 1988, which was confirmed by a government decree issued in December 1990. The most recent launch was on June 29, 2007, named Cosmos-2428. It is believed that was the last Tselina-2, with a next generation coming.

According to citation
author = James Martin Center for Nonproliferation Studies
title = Russia: Military Programs
url = http://cns.miis.edu/research/space/russia/mil.htm
accessdate = 2007-10-19
, the Tselina-2 is intended for land targets, while the US-PU EORSAT is intended for naval ELINT. According to Pavel Podvig, EORSAT is passive, not to be confused with the nuclear-powered radar ocean surveillance satellites (RORSAT), no longer operational. citation
author = Podvig, Pavel
title = Russia: Military Programs
url = http://russianforces.org/podvig/eng/publications/space/20040700aaas.shtml
date=June 2004
accessdate = 2007-10-19
A full constellation of US-PU includes 3-4 spacecraft in LEO of 400 km, but not more than one has been in orbit since 2004, along with two Tselina-2's. Podvig also believes a new generation of ELINT satellites, possibly combining the land and sea missions, may be in development.

pain: Satellite Platforms

Spain is a financial partner in the French Helios 2 IMINT satellite system. Spain plans a dual-use optical and radar system. Due to the arrangement between France and Germany to exchange Helios 2 and SAR Lupe imagery, excluding the non-French partners in Helios. It has not been announced if Spain, as a Helios 2 partner, will have access to French Essaim ELINT. Spain is a MUSIS partner, which should be considered in assessing the potential of information sharing among the partners.

United States: Satellite Platforms

The first US SIGINT satellites, Galactic Radiation and Background (GRAB) were launched in 1960 by the Naval Research Laboratory, but the existence of the program was highly classified. The name of the program was changed to Poppy (satellite) after the National Reconnaissance Office was created in 1962.

While there had been considerable resistance, in the 1970s, to admitting to "the fact of" satellite IMINT [cite web
last = Laird
first = Melvin R.
authorlink = Melvin R. Laird
title = Memorandum for Assistant to the President for National Security Affairs, Subject: Revelation of the Fact of Satellite Reconnaissance in Connection with the Submission of Arms Limitation Agreements to Congress
date=June 8, 1972
url = http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB231/doc02.pdf
ID = Laird
accessdate = 2007-10-02|format=PDF
] , there was considerably more sensitivity to admitting even to "the fact of" US satellite SIGINT [cite web
last = Ellsworth
first = Robert M.
title = Memorandum for [then-Director of Central Intelligence] Mr. Bush, Subject: Declassification of Satellite Reconnaissance
date=June 16, 1976
url = http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB231/doc10.pdf
ID = Ellsworth
accessdate = 2007-10-05|format=PDF
] . The US decided to admit to using satellites for SIGINT and MASINT in 1996. [cite web
last = The White House
title = National Space Policy
date=September 19, 1996
url = http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB231/doc41.pdf
accessdate = 2007-10-05|format=PDF
] .

US SIGINT satellites have included the CANYON series Rhyolite/Aquacade series, succeeded by the Vortex/Magnum/Orion and Mentor. Where the preceding satellites were in close to geosynchronous orbit, JUMPSEAT/TRUMPET satellites were in Moliyna orbits giving better polar coverage.

From 1972 to 1989, low earth orbit SIGINT satellites were launched only as secondary payloads with KH-9 and KH-11 IMINT satellites. They were code-named after female sex symbols, such as RAQUEL, FARRAH, BRIDGET and MARILYN.

Four geosychronous RHYOLITE satellites were launched in the seventies, with COMINT and TELINT missions. After having the name compromised when Christopher Boyce sold information to the Soviets, the code name was changed to AQUACADE.

In the late seventies, another class of geosynchronous SIGINT satellites, first called CHALET and renamed VORTEX after the code name was compromised. After the loss of Iranian monitoring stations, these satellites were also given a TELINT capability.

JUMPSEAT ELINT satellites, using a Moliyna orbit, started launching in 1975.

MAGNUM geosynchronous SIGINT satellites were first launched from the Space Shuttle in 1985. These were believed to be more sensitive and perhaps stealthier than RHYOLITE/AQUACADE.

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Signals intelligence — SIGINT redirects here. For the UNIX signal, see SIGINT (POSIX). RAF Menwith Hill, a large site in the United Kingdom, part of ECHELON and the UK USA Security Agreement. Signals intelligence (often contracted to SIGINT) is intelligence gathering… …   Wikipedia

  • Signals intelligence by alliances, nations and industries — This article is a subset article under the main article SIGINT, which addresses the unifying conceptual and technical factors in this intelligence discipline. This article describes how the discipline is used by multinational alliances and… …   Wikipedia

  • Signals intelligence in modern history — This article is a subset article of the article Signals intelligence, which addresses the unifying conceptual and technical factors and common technologies in this intelligence discipline. This article deals with signals intelligence in the… …   Wikipedia

  • Intelligence cycle management — This article is at the top level of a series of articles about Intelligence Cycle Management.Within the context of government, military and business affairs, intelligence (the gathering and analysis of accurate, reliable information) is intended… …   Wikipedia

  • Intelligence dissemination management — This article is part of a series on intelligence cycle management, and deals with the dissemination of processed intelligence. For a hierarchical list of articles, see the intelligence cycle management hierarchy. It is a classic maxim of… …   Wikipedia

  • Clandestine HUMINT operational techniques — The Clandestine HUMINT page deals with the functions of that discipline, including espionage and active counterintelligence. This page deals with Clandestine HUMINT operational techniques, also called tradecraft . It applies to clandestine… …   Wikipedia

  • Measurement and signature intelligence — (MASINT) is a branch of intelligence gathering activities. MASINT, may have aspects of intelligence analysis management, since certain aspects of MASINT, such as the analysis of electromagnetic radiation received by signals intelligence are more… …   Wikipedia

  • Counter-intelligence and counter-terrorism organizations — Counterintelligence, and closely related counterterrorism, may well be a source of positive intelligence on the opposition s priorities and thinking, not just a defensive measure. Still, foreign intelligence capability is an important part of… …   Wikipedia

  • Market Intelligence — (often contracted to MARKINT) is a relatively new intelligence discipline that exploits open source information gathered from global markets. It relies solely on publicly available information such as market prices and ancillary economic and… …   Wikipedia

  • Cognitive traps for intelligence analysis — This article deals with a subset of the intellectual process of intelligence analysis itself, as opposed to intelligence analysis management, which in turn is a subcomponent of intelligence cycle management. For a complete hierarchical list of… …   Wikipedia