Fire-control radar


Fire-control radar

A fire-control radar is a radar which is designed specifically to provide information (mainly target azimuth, elevation, range and velocity) to a fire-control system in order to calculate a firing solution (i.e. information on how to direct weapons such that they hit the target(s)). Such radars typically emit a narrow, intense beam of radio waves to ensure accurate tracking information and to minimise the chance of losing track of the target. Some modern radars have a track-while-scan capability enabling it to function simultaneously as a fire-control radar and a search radar. This works either by having the radar switch between sweeping the search sector and sending directed pulses at the target to be tracked, or by using a phased-array antenna to generate two (or more) discrete radar beams and dividing them between both tasks.

Operational phases

Fire-control radars operate in three different phases:

;Designation phase: The fire-control radar must be directed to the general location of the target due to the radar’s narrow beam width.;Acquisition phase: The fire-control radar switches to the acquisition phase of operation once the radar is in the general vicinity of the target. During this phase, the radar system searches in the designated area in a predetermined search pattern until the target is located or redesignated.;Track phase: The fire-control radar enters into the track phase when the target is located. The radar system locks onto the target during this phase.

Performance

The performance of a fire-control radar is determined by primarily by two factors, radar resolution and atmospheric conditions. Radar resolution is the ability of the radar to differentiate between two targets closely located. The first, and most problematic, is gaining high range resolution. To do this in a basic fire-control radar system, it must operate at a high pulse repetition frequency and have a high receiver sensitivity. Bearing resolution is typically ensured by using a narrow (one or two degree) beam width. Atmospheric conditions, such as moisture lapse, temperature inversion, and dust particles affect radar performance as well. Moisture lapse and temperature inversion often cause ducting, in which RF energy is bent as it passes through hot and cold layers. This can either extend or reduce the radar horizon, depending on which way the RF is bent. Dust particles, as well as water droplets, cause attenuation of the RF energy, translating into a loss of effective range. In both cases, a lower pulse repetition frequency makes the radar less susceptible to atmospheric conditions.

Examples

On of the first successful fire-control radars, the SCR-584, was used effectively and extensively by the Allies during World War II.

Examples of fire-control radars currently in use by the United States Navy:
*Mk 95 — Continuous Wave Illuminator (NATO Seasparrow Surface Missile System)
*Mk 92 — Combined Antenna System (Mk 75 Gun, formerly SM-1 missiles)
*SPG-62 — Continuous Wave Illuminator (AEGIS)
*AN/SPQ-9B — Pulse Doppler (Mk 45 lightweight gun)

Most fire-control radars have unique characteristics, such as radio frequency, pulse duration, pulse frequency and power. These can assist in identifying the radar, and therefore the weapon system it is controlling. This can provide valuable tactical information, like the maximum range of the weapon, or flaws that can be exploited, to combatants that are listening for these signs. During the cold war Soviet fire control radars were often named and NATO pilots would be able to identify the threats present by the radar signals they received.

ee also

*AN/SPG-51
*AN/SPG-53
*AN/SPG-55

References

* US Navy, FIRE CONTROLMAN, VOLUME 02--FIRE CONTROL RADAR FUNDAMENTALS (Revised)


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • fire-control radar — A radar providing target inputs to a weapon fire control system. The term applies to surface to air weapon systems. Normally, initial target information is obtained from surveillance radar and, thereafter, as it approaches near the radar, it is… …   Aviation dictionary

  • fire-control radar — ugnies valdymo radiolokatorius statusas T sritis Gynyba apibrėžtis Radiolokatorius duomenims apie taikinį ginklų ugnies valdymo sistemoms pateikti. atitikmenys: angl. fire control radar pranc. radar de tir …   NATO terminų aiškinamasis žodynas

  • fire control radar — Radar used to provide target information inputs to a weapon fire control system …   Military dictionary

  • fire control radar — noun naval radar that controls the delivery of fire on a military target • Topics: ↑military, ↑armed forces, ↑armed services, ↑military machine, ↑war machine • Hypernyms: ↑naval radar …   Useful english dictionary

  • antiaircraft fire control radar — priešlėktuvinių pabūklų valdymo radaras statusas T sritis radioelektronika atitikmenys: angl. antiaircraft fire control radar vok. Luftabwehrsteuerradar, n rus. радиолокационная станция управления зенитным орудием, f pranc. radar de conduite de… …   Radioelektronikos terminų žodynas

  • Fire-control system — Note: the term fire control may also refer to means of stopping a fire, such as sprinkler systems. A fire control system is a computer, often mechanical, which is designed to assist a weapon system in hitting its target. It performs the same task …   Wikipedia

  • Ship gun fire-control system — Mk 37 Director c1944 with Mk 12 (rectangular antenna) and Mk 22 orange peel Ship gun fire control systems (GFCS) enable remote and automatic targeting of guns against ships, aircraft, and shore targets, with or without the aid of radar or optical …   Wikipedia

  • Tartar Guided Missile Fire Control System — DescriptionThe Tartar Guided Missile Fire Control System, or Mk 74 Guided Missile Fire Control System, or just Tartar , is a US built medium range anti aircraft missile system. The French version used on Cassard class frigates is composed by a… …   Wikipedia

  • Mk 92 Guided Missile Fire Control System — The Mk 92 is part of the combat systems of the Oliver Hazard Perry class frigate. The Mk 92 Fire Control System is a US built medium range anti aircraft missile and gun fire control system. It was developed for the Oliver Hazard Perry class… …   Wikipedia

  • Mark I Fire Control Computer — Mark 1A Computer Mk 37 Director above bridge of destroyer USS Cassin Young  …   Wikipedia