# Slope deflection method

﻿
Slope deflection method

The slope deflection method is a structural analysis method for beams and frames introduced in 1915 by George A. Maney.Citation|first=George A.|last=Maney|year=1915|title=Studies in Engineering|publisher=University of Minnesota|location=Minneapolis] This method neglects the deformations due to shear and axial forces. The slope deflection method was widely used for more than a decade until the moment distribution method was developed.

Introduction

By forming slope deflection equations and applying joint and shear equilibrium conditions, the rotation angles (or the slope angles) are calculated. Substutituting them back into the slope deflection equations, member end moments are readily determined.

Slope deflection equations

The slope deflection equations express the member end moments in terms of rotations angles. The slope deflection equations of member ab of flexural rigidity $EI_\left\{ab\right\}$ and length $L_\left\{ab\right\}$ are::$M_\left\{ab\right\} = frac\left\{EI_\left\{ab\left\{L_\left\{ab left\left( 4 heta_a + 2 heta_b - 6 frac\left\{Delta\right\}\left\{L_\left\{ab ight\right)$:$M_\left\{ba\right\} = frac\left\{EI_\left\{ab\left\{L_\left\{ab left\left( 2 heta_a + 4 heta_b - 6 frac\left\{Delta\right\}\left\{L_\left\{ab ight\right)$where $heta_a$, $heta_b$ are the slope angles of ends a and b respectively, $Delta$ is the relative lateral displacement of ends a and b. The absence of cross-sectional area of the member in these equations implies that the slope deflection method neglects the effect of shear and axial deformations.

The slope deflection equations can also be written using the stiffness factor $K=frac\left\{I_\left\{ab\left\{L_\left\{ab$ and the chord rotation $psi =frac\left\{ Delta\right\}\left\{L_\left\{ab$:

:$M_\left\{ab\right\} = 2EK left\left( 2 heta_a + heta_b - 3 psi ight\right)$:$M_\left\{ba\right\} = 2EK left\left( heta_a + 2 heta_b - 3 psi ight\right)$

Derivation of slope deflection equations

When a simple beam of length $L_\left\{ab\right\}$ and flexural rigidity $EI_\left\{ab\right\}$ is loaded at each end with clockwise moments $M_\left\{ab\right\}$ and $M_\left\{ba\right\}$, member end rotations occur in the same direction. These rotation angles can be calculated using the unit dummy force method or the moment-area theorem.

:$heta_a - frac\left\{Delta\right\}\left\{L_\left\{ab= frac\left\{L_\left\{ab\left\{3EI_\left\{ab M_\left\{ab\right\} - frac\left\{L_\left\{ab\left\{6EI_\left\{ab M_\left\{ba\right\}$:$heta_b - frac\left\{Delta\right\}\left\{L_\left\{ab= - frac\left\{L_\left\{ab\left\{6EI_\left\{ab M_\left\{ab\right\} + frac\left\{L_\left\{ab\left\{3EI_\left\{ab M_\left\{ba\right\}$

Rearranging these equations, the slope deflection equations are derived.

Equilibrium conditions

Joint equilibrium

Joint equilibrium conditions imply that each joint with a degree of freedom should have no unbalanced moments i.e. be in equilibrium. Therefore,:$Sigma left\left( M^\left\{f\right\} + M_\left\{member\right\} ight\right) = Sigma M_\left\{joint\right\}$Here, $M_\left\{member\right\}$ are the member end moments, $M^\left\{f\right\}$ are the fixed end moments, and $M_\left\{joint\right\}$ are the external moments directly applied at the joint.

Shear equilibrium

When there are chord roations due to sidesway in a frame, additional equilibrium conditions, namely the shear equilibrium conditions need to be taken into account.

Example

The statically indeterminate beam shown in the figure is to be analysed.
*Members AB, BC, CD have the same length $L = 10 m$.
*Flexural rigidities are EI, 2EI, EI respectively.
*Concentrated load of magnitude $P = 10 kN$ acts at a distance $a = 3 m$ from the support A.
*Uniform load of intensity $q = 1 kN/m$ acts on BC.
*Member CD is loaded at its midspan with a concentrated load of magnitude $P = 10 kN$.In the following calcuations, clockwise moments and rotations are positive.

Degrees of freedom

Rotation angles $heta_A$, $heta_B$, $heta_C$ of joints A, B, C respectively are taken as the unknowns. There are no chord rotations due to other causes including support settlement.

Fixed end moments

Fixed end moments are::$M _\left\{AB\right\} ^f = - frac\left\{P a b^2 \right\}\left\{L ^2\right\} = - frac\left\{10 imes 3 imes 7^2\right\}\left\{10^2\right\} = -14.7 kNcdot m$:$M _\left\{BA\right\} ^f = frac\left\{P a^2 b\right\}\left\{L^2\right\} = frac\left\{10 imes 3^2 imes 7\right\}\left\{10^2\right\} = 6.3 kNcdot m$:$M _\left\{BC\right\} ^f = - frac\left\{qL^2\right\}\left\{12\right\} = - frac\left\{1 imes 10^2\right\}\left\{12\right\} = - 8.333 kNcdot m$:$M _\left\{CB\right\} ^f = frac\left\{qL^2\right\}\left\{12\right\} = frac\left\{1 imes 10^2\right\}\left\{12\right\} = 8.333 kNcdot m$:$M _\left\{CD\right\} ^f = - frac\left\{PL\right\}\left\{8\right\} = - frac\left\{10 imes 10\right\}\left\{8\right\} = -12.5 kNcdot m$:$M _\left\{DC\right\} ^f = frac\left\{PL\right\}\left\{8\right\} = frac\left\{10 imes 10\right\}\left\{8\right\} = 12.5 kNcdot m$

Slope deflection equations

The slope deflection equations are constructed as follows::$M_\left\{AB\right\} = frac\left\{EI\right\}\left\{L\right\} left\left( 4 heta_A + 2 heta_B ight\right) = 0.4EI heta_A + 0.2EI heta_B$ :$M_\left\{BA\right\} = frac\left\{EI\right\}\left\{L\right\} left\left( 2 heta_A + 4 heta_B ight\right) = 0.2EI heta_A + 0.4EI heta_B$ :$M_\left\{BC\right\} = frac\left\{2EI\right\}\left\{L\right\} left\left( 4 heta_B + 2 heta_C ight\right) = 0.8EI heta_B + 0.4EI heta_C$ :$M_\left\{CB\right\} = frac\left\{2EI\right\}\left\{L\right\} left\left( 2 heta_B + 4 heta_C ight\right) = 0.4EI heta_B + 0.8EI heta_C$ :$M_\left\{CD\right\} = frac\left\{EI\right\}\left\{L\right\} left\left( 4 heta_C ight\right) = 0.4EI heta_C$ :$M_\left\{DC\right\} = frac\left\{EI\right\}\left\{L\right\} left\left( 2 heta_C ight\right) = 0.2EI heta_C$

Joint equilibrium equations

Joints A, B, C should suffice the equilibrium condition. Therefore:$Sigma M_A = M_\left\{AB\right\} + M_\left\{AB\right\}^f = 0.4EI heta_A + 0.2EI heta_B - 14.7 = 0$:$Sigma M_B = M_\left\{BA\right\} + M_\left\{BA\right\}^f + M_\left\{BC\right\} + M_\left\{BC\right\}^f = 0.2EI heta_A + 1.2EI heta_B + 0.4EI heta_C - 2.033 = 0$:$Sigma M_C = M_\left\{CB\right\} + M_\left\{CB\right\}^f + M_\left\{CD\right\} + M_\left\{CD\right\}^f = 0.4EI heta_B + 1.2EI heta_C - 4.167 = 0$

Rotation angles

By solving the above simultaneous equations, rotations angles are given.:$heta_A = frac\left\{40.219\right\}\left\{EI\right\}$:$heta_B = frac\left\{-6.937\right\}\left\{EI\right\}$:$heta_C = frac\left\{5.785\right\}\left\{EI\right\}$

Member end moments

Substitution of these values back into the slope deflection equations yields the member end moments.:$M_\left\{AB\right\} = 0.4 imes 40.219 + 0.2 imes left\left( -6.937 ight\right) - 14.7 = 0$:$M_\left\{BA\right\} = 0.2 imes 40.219 + 0.4 imes left\left( -6.937 ight\right) + 6.3 = 11.57$:$M_\left\{BC\right\} = 0.8 imes left\left( -6.937 ight\right) + 0.4 imes 5.785 - 8.333 = -11.57$:$M_\left\{CB\right\} = 0.4 imes left\left( -6.937 ight\right) + 0.8 imes 5.785 + 8.333 = 10.19$:$M_\left\{CD\right\} = 0.4 imes 5.785 - 12.5 = -10.19$:$M_\left\{DC\right\} = 0.2 imes 5.785 + 12.5 = 13.66$

Notes

References

*cite book |last=McCormac|first=Jack C.|coauthors=James K. Nelson, Jr.|title=Structural Analysis: A Classical and Matrix Approach|edition=2nd |year=1997|publisher=Addison-Wesley|isbn=0-673-99753-7|pages=430-451
*cite book|last=Yang|first=Chang-hyeon|title=Structural Analysis|url=http://www.cmgbook.co.kr/category/sub_detail.html?no=1017|edition=4th|date=2001-01-10|publisher=Cheong Moon Gak Publishers|language=Korean|location=Seoul|isbn=89-7088-709-1|pages=357-389

*Moment distribution method

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Deflection (engineering) — In engineering, deflection is the degree to which a structural element is displaced under a load. It may refer to an angle or a distance. The deflection distance of a member under a load is directly related to the slope of the deflected shape of… …   Wikipedia

• Moment distribution method — The moment distribution method (not to be confused with moment redistribution) is a structural analysis method for statically indeterminate beams and frames developed by Hardy Cross. It was published in 1930 in an ASCE journal. The method only …   Wikipedia

• Conjugate beam method — (0) real beam, (1) shear and moment, (2) conjugate beam, (3) slope and displacement The conjugate beam method is an engineering method to derive the slope and displacement of a beam. The conjugate beam method was developed by H. Müller Breslau in …   Wikipedia

• Fixed end moment — The fixed end moments are reaction moments developed in a beam member under certain load conditions with both ends fixed. Many structural analysis methods including the moment distribution method, slope deflection method and the matrix method… …   Wikipedia

• Beam (structure) — A statically determinate beam, bending (sagging) under an evenly distributed load. A beam is a horizontal structural element that is capable of withstanding load primarily by resisting bending. The bending force induced into the material of the… …   Wikipedia

• Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign — Department of Civil and Environmental Engineering University of Illinois at Urbana Champaign Newmark Civil Engineering Laboratory …   Wikipedia

• МЕТОД ПЕРЕМЕЩЕНИЙ — метод строительной механики для определения усилий и перемещений в статически неопределимых конструктивных системах, при котором в качестве основных неизвестных выбираются линейные и угловые перемещения (Болгарский язык; Български) метод на… …   Строительный словарь

• метод перемещений — Метод строительной механики для определения усилий и перемещений в статически неопределимых конструктивных системах, при котором в качестве основных неизвестных выбираются линейные и угловые перемещения [Терминологический словарь по строительству …   Справочник технического переводчика