Riemann-Siegel theta function

Riemann-Siegel theta function

In mathematics, the Riemann-Siegel theta function is defined in terms of the Gamma function as

: heta(t) = arg left(Gammaleft(frac{2it+1}{4} ight) ight) - frac{log pi}{2} t

for real values of t. Here the argument is chosen in such a way that a continuous function is obtained, i.e., in the same way that the principal branch of the log Gamma function is defined.

It has an asymptotic expansion

: heta(t) sim frac{t}{2}log frac{t}{2pi} - frac{t}{2} - frac{pi}{8}+frac{1}{48t}+ frac{7}{5760t^3}+cdots

which is strongly convergent for t gg 1.

It is of interest in studying the Riemann zeta function, since it gives the argument of the zeta function on the critical line s = 1/2 + i t.

The Riemann-Siegel theta function is an odd real analytic function for real values of t; it is an increasing function for values |t| > 6.29.

Theta as a function of a complex variable

We have an infinite series expression for the log Gamma function

:log Gamma z = -gamma z -log z + sum_{n=1}^infty left(frac{z}{n} - log left(1+frac{z}{n} ight) ight),

where γ is Euler's constant. Substituting (2it+1)/4 for z and taking the imaginary part termwise gives the following series for θ(t)

: heta(t) = -frac{gamma + log pi}{2}t - arctan 2t + sum_{n=1}^infty left(frac{t}{2n} - arctanleft(frac{2t}{4n+1} ight) ight)

For values with imaginary part between -1 and 1, the arctangent function is holomorphic, and it is easily seen that the series converges uniformly on compact sets in the region with imaginary part between -1/2 and 1/2, leading to a holomorphic function on this domain. It follows that the Z function is also holomorphic in this region, which is the critical strip.

We may use the identities

:arg z = frac{log z - logar z}{2i}quad ext{and}quadoverline{Gamma(z)}=Gamma(ar z)

to obtain the closed-form expression

: heta(t) = frac{logGammaleft(frac{2it+1}{4} ight)-logGammaleft(frac{-2it+1}{4} ight)}{2i} - frac{log pi}{2} t,

which extends our original definition to a holomorphic function of t. Since the principal branch of log Γ has a single branch cut along the negative real axis, θ(t) in this definition inherits branch cuts along the imaginary axis above i/2 and below -i/2.

Gram points

The Riemann zeta function on the critical line can be written

:zetaleft(frac{1}{2}+it ight) = e^{-i heta(t)}Z(t),:Z(t) = e^{i heta(t)} zetaleft(frac{1}{2}+it ight)

If t is a real number, then the Z function, Zleft(t ight), returns "real" values.

Hence the zeta function on the critical line will be "real" whensinleft(, heta(t), ight)=0. Positive real values of t where this occurs are called Gram points, after J.-P. Gram, and can of course also be described as the points where frac{ heta(t)}{pi} is an integer.

A Gram point is a solution, "n" of: hetaleft(g_{n} ight) = npi

Here are some examples of Gram points

Gram points are useful when computing the zeros of Zleft(t ight). At a Gram point g_{n},

:zetaleft(frac{1}{2}+ig_n ight) = cos( heta(g_n))Z(g_n) = (-1)^n Z(g_n),

and if this is "positive" at "two" successive Gram points, Zleft(t ight) must have a zero in the interval.

According to Gram’s law, the real part is "usually" positivedubious while the imaginary part alternates with the gram points, between "positive" and "negative" values at somewhat regular intervals.

:Releft{,(-1)^n , Zleft(g_{n} ight), ight} > 0

The number of roots, Rleft(t ight), in the strip from "0" to "t", can be found by:Rleft(t ight) = frac{ heta(t)}{pi} + 1

If g_{n} obeys Gram’s law, then finding the number of roots in the strip simply becomes:Rleft(g_{n} ight) = n + 1


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Theta function — heta 1 with u = i pi z and with nome q = e^{i pi au}= 0.1 e^{0.1 i pi}. Conventions are (mathematica): heta 1(u;q) = 2 q^{1/4} sum {n=0}^infty ( 1)^n q^{n(n+1)} sin((2n+1)u) this is: heta 1(u;q) = sum {n= infty}^{n=infty} ( 1)^{n 1/2}… …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 …   Wikipedia

  • Hypothèse de Riemann — Représentation du module de la fonction zêta de Riemann. En mathématiques, l hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann. Elle dit que les zéros non triviaux de la fonction zêta d …   Wikipédia en Français

  • Z function — In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the real part of the argument is one half. It is also called the Riemann Siegel Z function, the Riemann Siegel zeta function,… …   Wikipedia

  • Bernhard Riemann — Infobox Scientist name =Bernhard Riemann box width =300px image width =225px caption =Bernhard Riemann, 1863 birth date =September 17, 1826 birth place =Breselenz, Germany death date =death date and age|1866|7|20|1826|9|17 death place =Selasca,… …   Wikipedia

  • Carl Siegel — Pour les articles homonymes, voir Siegel. Carl Ludwig Siegel en 1975 Carl Ludwig Siegel (31 décembre  …   Wikipédia en Français

  • Carl Ludwig Siegel — Infobox Scientist name = Carl Ludwig Siegel image width = 242 x 360 22k caption = Carl Ludwig Siegel birth date = birth date|1896|12|31 birth place = Berlin, Germany death date = death date and age|1981|4|4|1896|12|31 death place = Göttingen,… …   Wikipedia

  • Riemann'sche Xi-Funktion — Die Riemannsche ξ Funktion in der komplexen Zahlenbene. In der Mathematik ist die riemannsche Xi Funktion eine Transformierte der riemannschen Zeta Funktion. Ihre Nullstellen entsprechen dabei ausschließlich den nichttrivialen Nullstellen der… …   Deutsch Wikipedia

  • Histoire De La Fonction Zeta De Riemann — Histoire de la fonction zêta de Riemann Cet article présente une histoire de la fonction zêta de Riemann. Pour une présentation mathématique de la fonction et de ses propriétés, voir : Article principal : fonction zêta de Riemann. Un… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”