Cyclin-dependent kinase 9

Rendering based on PDB 1PF6.
Symbols CDK9; C-2k; CDC2L4; CTK1; PITALRE; TAK
External IDs OMIM603251 MGI1328368 HomoloGene55566 GeneCards: CDK9 Gene
RNA expression pattern
PBB GE CDK9 203198 at tn.png
More reference expression data
Species Human Mouse
Entrez 1025 107951
Ensembl ENSG00000136807 ENSMUSG00000009555
UniProt P50750 Q99J95
RefSeq (mRNA) NM_001261.3 NM_130860.3
RefSeq (protein) NP_001252.1 NP_570930.1
Location (UCSC) Chr 9:
130.55 – 130.55 Mb
Chr 2:
32.56 – 32.57 Mb
PubMed search [1] [2]

CDK9 or cyclin-dependent kinase 9 is a cyclin-dependent kinase associated with P-TEFb. The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS. [1] CDK9 is also known to associate with other proteins such as TRAF2, and be involved in differentiation of skeletal muscle. [2]



CDK9 has been shown to interact with Cyclin K,[3] Cyclin T2,[4] RELA,[5] Cyclin T1,[6][7][8][9][10][11][3][4][12] Retinoblastoma protein,[13] Androgen receptor,[14] SKP1A,[10] MYBL2,[11] CDC34[10] and SUPT5H.[12]


  1. ^ "Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)". 
  2. ^ MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, Giordano A., et al. (1998). "Binding of CDK9 to TRAF2.". J. Cell. Biochem. 71 (4): 467–78. doi:10.1002/(SICI)1097-4644(19981215)71:4<467::AID-JCB2>3.0.CO;2-G. PMID 9827693. 
  3. ^ a b Fu, T J; Peng J, Lee G, Price D H, Flores O (Dec. 1999). "Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription". J. Biol. Chem. (UNITED STATES) 274 (49): 34527–30. doi:10.1074/jbc.274.49.34527. ISSN 0021-9258. PMID 10574912. 
  4. ^ a b Peng, J; Zhu Y, Milton J T, Price D H (Mar. 1998). "Identification of multiple cyclin subunits of human P-TEFb". Genes Dev. (UNITED STATES) 12 (5): 755–62. doi:10.1101/gad.12.5.755. ISSN 0890-9369. PMC 316581. PMID 9499409. 
  5. ^ Amini, Shohreh; Clavo Anaira, Nadraga Yuri, Giordano Antonio, Khalili Kamel, Sawaya Bassel E (Aug. 2002). "Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells". Oncogene (England) 21 (37): 5797–803. doi:10.1038/sj.onc.1205754. ISSN 0950-9232. PMID 12173051. 
  6. ^ Cabart, Pavel; Chew Helen K, Murphy Shona (Jul. 2004). "BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II". Oncogene (England) 23 (31): 5316–29. doi:10.1038/sj.onc.1207684. ISSN 0950-9232. PMID 15107825. 
  7. ^ Young, Tara M; Wang Qi, Pe'ery Tsafi, Mathews Michael B (Sep. 2003). "The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. (United States) 23 (18): 6373–84. doi:10.1128/MCB.23.18.6373-6384.2003. ISSN 0270-7306. PMC 193714. PMID 12944466. 
  8. ^ Michels, Annemieke A; Nguyen Van Trung, Fraldi Alessandro, Labas Valérie, Edwards Mia, Bonnet François, Lania Luigi, Bensaude Olivier (Jul. 2003). "MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner". Mol. Cell. Biol. (United States) 23 (14): 4859–69. doi:10.1128/MCB.23.14.4859-4869.2003. ISSN 0270-7306. PMC 162212. PMID 12832472. 
  9. ^ Hoque, Mainul; Young Tara M, Lee Chee-Gun, Serrero Ginette, Mathews Michael B, Pe'ery Tsafi (Mar. 2003). "The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. (United States) 23 (5): 1688–702. doi:10.1128/MCB.23.5.1688-1702.2003. ISSN 0270-7306. PMC 151712. PMID 12588988. 
  10. ^ a b c Kiernan, R E; Emiliani S, Nakayama K, Castro A, Labbé J C, Lorca T, Nakayama Ki K, Benkirane M (Dec. 2001). "Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome". Mol. Cell. Biol. (United States) 21 (23): 7956–70. doi:10.1128/MCB.21.23.7956-7970.2001. ISSN 0270-7306. PMC 99964. PMID 11689688. 
  11. ^ a b De Falco, G; Bagella L, Claudio P P, De Luca A, Fu Y, Calabretta B, Sala A, Giordano A (Jan. 2000). "Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation". Oncogene (ENGLAND) 19 (3): 373–9. doi:10.1038/sj.onc.1203305. ISSN 0950-9232. PMID 10656684. 
  12. ^ a b Garber, M E; Mayall T P, Suess E M, Meisenhelder J, Thompson N E, Jones K A (Sep. 2000). "CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA". Mol. Cell. Biol. (UNITED STATES) 20 (18): 6958–69. doi:10.1128/MCB.20.18.6958-6969.2000. ISSN 0270-7306. PMC 88771. PMID 10958691. 
  13. ^ Simone, Cristiano; Bagella Luigi, Bellan Cristiana, Giordano Antonio (Jun. 2002). "Physical interaction between pRb and cdk9/cyclinT2 complex". Oncogene (England) 21 (26): 4158–65. doi:10.1038/sj.onc.1205511. ISSN 0950-9232. PMID 12037672. 
  14. ^ Lee, D K; Duan H O, Chang C (Mar. 2001). "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". J. Biol. Chem. (United States) 276 (13): 9978–84. doi:10.1074/jbc.M002285200. ISSN 0021-9258. PMID 11266437. 

Further reading

  • Jeang KT (1998). "Tat, Tat-associated kinase, and transcription.". J. Biomed. Sci. 5 (1): 24–7. doi:10.1007/BF02253352. PMID 9570510. 
  • Yankulov K, Bentley D (1998). "Transcriptional control: Tat cofactors and transcriptional elongation.". Curr. Biol. 8 (13): R447–9. doi:10.1016/S0960-9822(98)70289-1. PMID 9651670. 
  • Romano G, Kasten M, De Falco G, et al. (2000). "Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.". J. Cell. Biochem. 75 (3): 357–68. doi:10.1002/(SICI)1097-4644(19991201)75:3<357::AID-JCB1>3.0.CO;2-K. PMID 10536359. 
  • Marcello A, Zoppé M, Giacca M (2002). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator.". IUBMB Life 51 (3): 175–81. doi:10.1080/152165401753544241. PMID 11547919. 
  • Huigen MC, Kamp W, Nottet HS (2004). "Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection.". Eur. J. Clin. Invest. 34 (1): 57–66. doi:10.1111/j.1365-2362.2004.01282.x. PMID 14984439. 
  • Rice AP, Herrmann CH (2004). "Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages.". Curr. HIV Res. 1 (4): 395–404. doi:10.2174/1570162033485159. PMID 15049426. 
  • Minghetti L, Visentin S, Patrizio M, et al. (2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions.". Neurochem. Res. 29 (5): 965–78. doi:10.1023/B:NERE.0000021241.90133.89. PMID 15139295. 
  • Liou LY, Herrmann CH, Rice AP (2005). "HIV-1 infection and regulation of Tat function in macrophages.". Int. J. Biochem. Cell Biol. 36 (9): 1767–75. doi:10.1016/j.biocel.2004.02.018. PMID 15183343. 
  • Pugliese A, Vidotto V, Beltramo T, et al. (2005). "A review of HIV-1 Tat protein biological effects.". Cell Biochem. Funct. 23 (4): 223–7. doi:10.1002/cbf.1147. PMID 15473004. 
  • Bannwarth S, Gatignol A (2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host.". Curr. HIV Res. 3 (1): 61–71. doi:10.2174/1570162052772924. PMID 15638724. 
  • Gibellini D, Vitone F, Schiavone P, Re MC (2005). "HIV-1 tat protein and cell proliferation and survival: a brief review.". New Microbiol. 28 (2): 95–109. PMID 16035254. 
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis.". Front. Biosci. 11: 708–17. doi:10.2741/1829. PMID 16146763. 

External links

B bsyn: dna (repl, cycl, reco, repr· tscr (fact, tcrg, nucl, rnat, rept, ptts) · tltn (risu, pttl, nexn) · dnab, rnab/runp · stru (domn, 1°, 2°, 3°, )

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Cyclin T2 — PDB rendering based on 2ivx …   Wikipedia

  • Cyclin T1 — Rendering based on PDB 2PK2 …   Wikipedia

  • CCNT2 — Cyclin T2, also known as CCNT2, is a human gene.cite web | title = Entrez Gene: CCNT2 cyclin T2| url = Cmd=ShowDetailView TermToSearch=905| accessdate = ] PBB Summary section title = summary text …   Wikipedia

  • ARNsn 7SK — Le petit ARN nucléaire 7SK (ARNsn 7SK ou snARN 7SK) découvert dans les années 1970, est un ARN non codant très abondant et très conservé entre les vertébrés. De plus, son existence chez les invertébrés a été récemment découverte[1]. Rôle La… …   Wikipédia en Français

  • HEXIM1 — Hexamethylene bis acetamide inducible 1, also known as HEXIM1, is a human gene.cite web | title = Entrez Gene: HEXIM1 hexamethylene bis acetamide inducible 1| url = Cmd=ShowDetailView… …   Wikipedia

  • CTDSPL — CTD (carboxy terminal domain, RNA polymerase II, polypeptide A) small phosphatase like, also known as CTDSPL, is a human gene.cite web | title = Entrez Gene: CTDSPL CTD (carboxy terminal domain, RNA polymerase II, polypeptide A) small phosphatase …   Wikipedia

  • Ciclina T2 — Estructura tridimensional de la ciclina T2. HUGO 1600 …   Wikipedia Español

  • Antonio Giordano — (born October 11, 1962), is an Italian American molecular biologist, best known as the discoverer of Rb2/p130, a tumor suppressor gene. Giordano is the President and Founder of the Sbarro Health Research Organization, which conducts research to… …   Wikipedia

  • RN7SK — RNA, 7SK, nuclear, also known as RN7SK, is a human gene.cite web | title = Entrez Gene: RN7SK RNA, 7SK, nuclear| url = Cmd=ShowDetailView TermToSearch=125050| accessdate = ] PBB Summary section… …   Wikipedia

  • Cyclin K — PDB rendering based on 2i53 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.