# Peano-Russell notation

﻿
Peano-Russell notation

Peano-Russell notation was Bertrand Russell's application of Peano's logical notation to the logical notions of Frege and was used in the writing of "Principia Mathematica" in collaboration with Alfred North Whitehead: [Russell, p. 4]

"The notation adopted in the present work is based upon that of Peano, and the following explanations are to some extent modelled on those which he prefixes to his "Formulario Mathematico"." (Chapter I: Preliminary Explanations of Ideas and Notations, page 4)

Variables

In the notation, variables are ambiguous in denotation, preserve a recognizable identity appearing in various places in logical statements within a given context, and have a range of possible determination between any two variables which is the same or different. When the possible determination is the same for both variables, then one implies the other; otherwise, the possible determination of one given to the other produces a meaningless phrase. The alphabetic symbol set for variables includes the lower and upper case Roman letters as well as many from the Greek alphabet.

Fundamental functions of propositions

The four fundamental functions are the "contradictory function", the "logical sum", the "logical product", and the "implicative function". [Russell, p. 6]

The contraditory function applied to a proposition returns its negation.:$sim p$

Logical sum

The logical sum applied to two propositions returns their disjunction.:$p lor q$

Logical product

The logical product applied to two propositions returns the truth-value of both propositions being simultaneously true.:$p cdot q$

Implicative function

The implicative function applied to two ordered propositions returns the truth value of the first implying the second proposition.:$p supset q$

More complex functions of propositions

"Equivalence" is written as $p equiv q$, standing for $p supset q cdot q supset p$. [Russell, p. 7]

"Assertion" is same as the making of a statement between two full stops.:$vdash p$An asserted proposition is either true or an error on the part of the writer. [Russell, p. 8]

"Inference" is equivalent to the rule "modus ponens", where $p cdot p supset q cdot supset q$ [Russell, pp. 8-9]

In addition to the logical product, "dots" are also used to show groupings of functions of propositions. In the above example, the dot before the final implication function symbol groups all of the previous functions on that line together as the antecedent to the final consequent.

The notation includes "definitions" as complex functions of propositions, using the equals sign "=" to separate the defined term from its symbolic definition, ending with the letters "def." [Russell, p. 11]

References

Russell, Bertrand and Alfred North Whitehead (1910). [http://worldcat.org/oclc/1041146 "Principia Mathematica"] Cambridge, England: The University Press.

Notes

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Notation (Mathematik) — Als Notation bezeichnet man in Mathematik, Logik und Informatik die Schreibweise von Formeln und Ausdrücken mittels mathematischer Symbole. Die mathematische Notation entspricht einer Sprache, die formaler ist als viele natürliche Sprachen und… …   Deutsch Wikipedia

• NOTATION MATHÉMATIQUE — Pour connaître une langue naturelle, il n’est pas nécessaire d’en apprendre l’histoire ni, pour comprendre sa littérature, de faire l’étude historique de la grammaire et du vocabulaire. À cet égard, le langage mathématique, en raison de son… …   Encyclopédie Universelle

• Peano axioms — In mathematical logic, the Peano axioms, also known as the Dedekind Peano axioms or the Peano postulates, are a set of axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used… …   Wikipedia

• Peano, Giuseppe — ▪ Italian mathematician born Aug. 27, 1858, Cuneo, Kingdom of Sardinia [now in Italy] died April 20, 1932, Turin, Italy       Italian mathematician and a founder of symbolic logic (logic) whose interests centred on the foundations of mathematics… …   Universalium

• Peano , Giuseppe — (1858–1932) Italian mathematician and logician Peano, who was born at Spinetta near Cuneo, in Italy, studied at the University of Turin and was an assistant there from 1880. He became extraordinary professor of infinitesimal calculus in 1890 and… …   Scientists

• Russell's paradox — Part of the foundations of mathematics, Russell s paradox (also known as Russell s antinomy), discovered by Bertrand Russell in 1901, showed that the naive set theory of Frege leads to a contradiction.It might be assumed that, for any formal… …   Wikipedia

• Mathematische Notation — Als Notation bezeichnet man in Mathematik, Logik und Informatik die Schreibweise von Formeln und Ausdrücken mittels mathematischer Symbole. Die mathematische Notation entspricht einer Sprache, die formaler ist als viele natürliche Sprachen und… …   Deutsch Wikipedia

• Polnische Notation — (kurz PN, auch Präfixnotation oder Łukasiewicz Notation genannt) ist eine klammerfreie Schreibweise für Formeln bzw. allgemein Ausdrücke, bei der der Operator vor seinen Operanden geschrieben wird: Operator Operand1 Operand2 ... OperandN Die… …   Deutsch Wikipedia

• Bertrand Russell — Infobox Philosopher region = Western Philosophy era = 20th century philosophy color = #B0C4DE image caption = Russell in 1907 image size = 150px name = Bertrand Arthur William Russell, 3rd Earl Russell birth = birth date|df=yes|1872|5|18 Trellech …   Wikipedia

• History of mathematical notation — Mathematical notation comprises the symbols used to write mathematical equations and formulas. It includes Hindu Arabic numerals, letters from the Roman, Greek, Hebrew, and German alphabets, and a host of symbols invented by mathematicians over… …   Wikipedia