# Fresnel equations

﻿
Fresnel equations

The Fresnel equations, deduced by Augustin-Jean Fresnel (pronEng|freɪˈnɛl), describe the behaviour of light when moving between media of differing refractive indices. The reflection of light that the equations predict is known as Fresnel reflection.

Explanation

When light moves from a medium of a given refractive index "n"1 into a second medium with refractive index "n"2, both reflection and refraction of the light may occur.

In the diagram on the right, an incident light ray PO strikes at point O the interface between two media of refractive indexes "n"1 and "n"2. Part of the ray is reflected as ray OQ and part refracted as ray OS. The angles that the incident, reflected and refracted rays make to the normal of the interface are given as θi, θr and θt, respectively.The relationship between these angles is given by the law of reflection and Snell's law.

The fraction of the incident power that is reflected from the interface is given by the "reflection coefficient" "R", and the fraction that is refracted is given by the "transmission coefficient" "T". [Hecht (1987), p. 100.] The media are assumed to be "non-magnetic".

The calculations of "R" and "T" depend on polarisation of the incident ray. If the light is polarised with the electric field of the light perpendicular to the plane of the diagram above ("s"-polarised), the reflection coefficient is given by:

: $R_s = left \left[ frac\left\{sin \left( heta_t - heta_i\right)\right\}\left\{sin \left( heta_t + heta_i\right)\right\} ight\right] ^2=left \left[frac\left\{n_1cos\left( heta_i\right)-n_2cos\left( heta_t\right)\right\}\left\{n_1cos\left( heta_i\right)+n_2cos\left( heta_t\right)\right\} ight\right] ^2=left \left[frac\left\{n_1cos\left( heta_i\right)-n_2sqrt\left\{1-left\left(frac\left\{n_1\right\}\left\{n_2\right\} sin heta_i ight\right)^2\left\{n_1cos\left( heta_i\right)+n_2sqrt\left\{1-left\left(frac\left\{n_1\right\}\left\{n_2\right\} sin heta_i ight\right)^2 ight\right] ^2$

where θt can be derived from θi by Snell's law and is simplified using trigonometric identities.

If the incident light is polarised in the plane of the diagram ("p"-polarised), the "R" is given by:

: $R_p = left \left[ frac\left\{ an \left( heta_t - heta_i\right)\right\}\left\{ an \left( heta_t + heta_i\right)\right\} ight\right] ^2=left \left[frac\left\{n_1cos\left( heta_t\right)-n_2cos\left( heta_i\right)\right\}\left\{n_1cos\left( heta_t\right)+n_2cos\left( heta_i\right)\right\} ight\right] ^2=left \left[frac\left\{n_1sqrt\left\{1-left\left(frac\left\{n_1\right\}\left\{n_2\right\} sin heta_i ight\right)^2\right\}-n_2cos\left( heta_i\right)\right\}\left\{n_1sqrt\left\{1-left\left(frac\left\{n_1\right\}\left\{n_2\right\} sin heta_i ight\right)^2\right\}+n_2cos\left( heta_i\right)\right\} ight\right] ^2$

The transmission coefficient in each case is given by "T"s = 1 − "R"s and "T"p = 1 − "R"p. [Hecht (1987), p. 102.]

If the incident light is unpolarised (containing an equal mix of "s"- and "p"-polarisations), the reflection coefficient is "R" = ("R"s + "R"p)/2.

Equations for coefficients corresponding to ratios of the electric field amplitudes of the waves can also be derived, and these are also called "Fresnel equations".

At one particular angle for a given "n"1 and "n"2, the value of "R"p goes to zero and a "p"-polarised incident ray is purely refracted. This angle is known as Brewster's angle, and is around 56° for a glass medium in air or vacuum. Note that this statement is only true when the refractive indexes of both materials are real numbers, as is the case for materials like air and glass. For materials that absorb light, like metals and semiconductors, "n" is complex, and "R"p does not generally go to zero.

When moving from a denser medium into a less dense one (i.e., "n"1 &gt; "n"2), above an incidence angle known as the "critical angle", all light is reflected and "R"s = "R"p = 1. This phenomenon is known as total internal reflection. The critical angle is approximately 41° for glass in air.

When the light is at near-normal incidence to the interface (θi ≈ θt ≈ 0), the reflection and transmission coefficient are given by:

: $R = R_s = R_p = left\left( frac\left\{n_1 - n_2\right\}\left\{n_1 + n_2\right\} ight\right)^2$ : $T = T_s = T_p = 1-R = frac\left\{4 n_1 n_2\right\}\left\{left\left(n_1 + n_2 ight\right)^2\right\}$

For common glass, the reflection coefficient is about 4%. Note that reflection by a window is from the front side as well as the back side, and that some of the light bounces back and forth a number of times between the two sides. The combined reflection coefficient for this case is 2"R"/(1 + "R"), when interference can be neglected.

In reality, when light makes multiple reflections between two parallel surfaces, the multiple beams of light generally interfere with one another, and the surfaces act as a Fabry-Perot interferometer. This effect is responsible for the colours seen in oil films on water, and it is used in optics to make optical coatings that can greatly lower the reflectivity or can be used as an optical filter.

It should be noted that the discussion given here assumes that the permeability μ is equal to the vacuum permeability μ0 in both media. This is approximately true for most dielectric materials, but not for some other types of material. The completely general Fresnel equations are more complicated.

ee also

*Index-matching material
*Fresnel diffraction
*Fresnel integral
*Fresnel lantern
*Fresnel lens
*Fresnel rhomb, Fresnel's apparatus to produce circularly polarized light [http://physics.kenyon.edu/EarlyApparatus/Polarized_Light/Fresnels_Rhomb/Fresnels_Rhomb.html]
*Fresnel zone
*Fresnel zone plate
*Fresnel number
*Fresnel drag
*Specular reflection

References

*cite book | first=Eugene|last=Hecht|year=1987|title=Optics|edition=2nd ed.|publisher=Addison Wesley|id=ISBN 0-201-11609-X

* [http://scienceworld.wolfram.com/physics/FresnelEquations.html Fresnel Equations] – Wolfram
* [http://swiss.csail.mit.edu/~jaffer/FreeSnell/ FreeSnell] – Free software computes the optical properties of multilayer materials
* [http://thinfilm.hansteen.net/ Thinfilm] – Web interface for calculating optical properties of thin films and multilayer materials. (Reflection & transmission coefficients, ellipsometric parameters Psi & Delta)
* [http://www.calctool.org/CALC/phys/optics/reflec_refrac Simple web interface for calculating single-interface reflection and refraction angles and strengths.]
* [http://ReflectionCoefficient.INFO/ ReflectionCoefficient.INFO] – Optical reflection coefficient calculator

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Fresnel (disambiguation) — Fresnel can refer to physicist Augustin Jean Fresnel, or to the following topics associated with him:*Fresnel equations, describing light reflection and refraction *Huygens Fresnel principle, a description of wave propagation *Fresnel diffraction …   Wikipedia

• Fresnel rhomb — A Fresnel rhomb is a prism like device designed in 1817 by Augustin Jean Fresnel for producing circularly polarized light. However, in contrast to a wave plate, the rhomb does not utilise birefringent properties of the material.The rhomb (usually …   Wikipedia

• Ecuaciones de Fresnel — Transmisión parcial y reflexión parcial de una onda unidimensional. Las ecuaciones de Fresnel, también conocidas como fórmulas de Fresnel, son un conjunto de relaciones matemáticas que relacionan las amplitudes de las ondas reflejadas y… …   Wikipedia Español

• Liste Des Équations Et Formules — Ceci est une Liste des équations et formules par ordre alphabétique. Cette liste contient les équations, les formules, les relations et autres identités, égalités ou inégalités. Sommaire : Haut A B C D E F G H I J K L M N O P Q R S T U V W X …   Wikipédia en Français

• Liste des equations et formules — Liste des équations et formules Ceci est une Liste des équations et formules par ordre alphabétique. Cette liste contient les équations, les formules, les relations et autres identités, égalités ou inégalités. Sommaire : Haut A B C D E F G H …   Wikipédia en Français

• Liste des équations et formules — Ceci est une Liste des équations et formules par ordre alphabétique. Cette liste contient les équations, les formules, les relations et autres identités, égalités ou inégalités. Sommaire : Haut A B C D E F G H I J K L M N O P Q R S T U V W X …   Wikipédia en Français

• Augustin-Jean Fresnel — Infobox Scientist name = Augustin Jean Fresnel box width = image width =150px caption = Augustin Jean Fresnel birth date = Birth date|1788|5|10 birth place = Broglie (Eure) death date = death date and age|1827|7|14|1788|5|10 death place =… …   Wikipedia

• Maxwell's equations — For thermodynamic relations, see Maxwell relations. Electromagnetism …   Wikipedia

• List of equations — This is a list of equations, by Wikipedia page. See also list of equations in classical mechanics, list of relativistic equations, equation solving, theory of equations.Eponymous equations* Arrhenius equation * Bernoulli s equation *… …   Wikipedia

• Liste d'équations et formules — Ceci est une Liste des équations et formules par ordre alphabétique. Cette liste contient les équations, les formules, les relations et autres identités, égalités ou inégalités. Sommaire : Haut A B C D E F G H I J K L M N O P Q R S T U V W X …   Wikipédia en Français