# Catmull–Clark subdivision surface

﻿
Catmull–Clark subdivision surface

In computer graphics, the Catmull–Clark algorithm is used in subdivision surface modeling to create smooth surfaces. It was devised by Edwin Catmull (of Pixar) and Jim Clark in 1978 as a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology . In 2005, Edwin Catmull received an Academy Award for Technical Achievement together with Tony DeRose and Jos Stam for their invention and application of subdivision surfaces [http://www.oscars.org/scitech/2005/winners.html] .

Recursive evaluation

Catmull–Clark surfaces E. Catmull and J. Clark: "Recursively generated B-spline surfaces on arbitrary topological surfaces", Computer-Aided Design 10(6):350-355 (November 1978), ( [http://dx.doi.org/10.1016/0010-4485(78)90110-0 doi] , [http://www.idi.ntnu.no/~fredrior/files/Catmull-Clark%201978%20Recursively%20generated%20surfaces.pdf pdf] )] are defined recursively, using the following refinement scheme:

Start with a mesh of an arbitrary polyhedron. All the vertices in the mesh shall be called original points.
* For each face, add a "face point"
** Set each face point to be the "centroid of all original points for the respective face".
** For each face point, add an edge for every edge of the face, connecting the face point to each edge point for the face.
* For each edge, add an "edge point".
** Set each edge point to be the "average of all neighbouring face points and original points".
* For each original point "P", take the average "F" of all "n" face points for faces touching "P", and take the average "R" of all "n" edge midpoints for edges touching "P", where each edge midpoint is the average of its two endpoint vertices. "Move each original point" to the point :: $\left\{F + 2R + \left(n-3\right)P over n\right\}.$

The new mesh will consist only of quadrilaterals, which won't in general be flat. The new mesh will generally look smoother than the old mesh.

Repeated subdivision results in smoother meshes. It can be shown that the limit surface obtained by this refinement process is at least $mathbb\left\{C\right\}^1$ at extraordinary vertices and $mathbb\left\{C\right\}^2$ everywhere else (when n indicates how many derivatives are continuous, we speak of $mathbb\left\{C\right\}^n$ continuity).

Exact evaluation

The limit surface of Catmull–Clark subdivision surfaces can also be evaluated directly, without any recursive refinement. This can be accomplished by means of the technique of Jos Stam Jos Stam, "Exact Evaluation of Catmull–Clark Subdivision Surfaces at Arbitrary Parameter Values", Proceedings of SIGGRAPH'98. In Computer Graphics Proceedings, ACM SIGGRAPH, 1998, 395–404 ( [http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/sig98.pdf pdf] , [http://www.dgp.toronto.edu/~stam/reality/Research/SubdivEval/index.html downloadable eigenstructures] )] . This method reformulates the recursive refinement process into a matrix exponential problem, which can be solved directly by means of matrix diagonalization.

Software using Catmull–Clark subdivision surfaces

* 3ds max
* 3D-Coat
* AC3D
* Anim8or
* Blender
* Carrara
* Cheetah3D
* Cinema4D
* DAZ Studio, 2.0
* Gelato
* Hexagon
* JPatch
* K-3D
* LightWave 3D, version 9
* Maya
* modo
* Mudbox
* Silo
* SketchUp -Requires a Plugin.
* Softimage XSI
* Strata 3D CX
* Wings 3D
* Zbrush

References

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Catmull–Clark Subdivision Surface — Erste Schritte und Endergebnis der Unterteilung eines Würfels mittels Catmull Clark Der Catmull Clark Algorithmus wird bei Computer Grafiken verwendet um durch Unterteilung (Subdivision) von Flächen, gleichmäßig verlaufende Oberflächen (Surfaces) …   Deutsch Wikipedia

• Subdivision surface — A subdivision surface, in the field of 3D computer graphics, is a method of representing a smooth surface via the specification of a coarser piecewise linear polygon mesh. The smooth surface can be calculated from the coarse mesh as the limit of… …   Wikipedia

• Subdivision Surface — Eine Subdivision Surface (deutsch: Unterteilungsfläche) ist in der Computergrafik eine glatte (in der ersten oder mehrfachen Ableitung stetige) Fläche, die aus einem Ausgangsgitter (auch Kontroll Polygonnetz genannt) erzeugt wurde. Eine… …   Deutsch Wikipedia

• Doo–Sabin subdivision surface — Simple Doo Sabin sudivision surface. The figure shows the limit surface, as well as the control point wireframe mesh. In computer graphics, Doo–Sabin subdivision surface is a type of subdivision surface based on a generalization of bi quadratic… …   Wikipedia

• Subdivision Surfaces — Eine Subdivision Surface (deutsch: Unterteilungsfläche) ist in der Computergrafik eine glatte (in der ersten oder mehrfachen Ableitung stetige) Fläche, die aus einem Ausgangsgitter (auch Kontroll Polygonnetz genannt) erzeugt wurde. Eine… …   Deutsch Wikipedia

• Surface de subdivision — Pour les articles homonymes, voir Surface. Dans le domaine de la CAO et des mathématiques, les surfaces de subdivision sont une façon de créer des surfaces lisses développant de plus en plus un maillage linéaire par morceaux. La surface lisse… …   Wikipédia en Français

• Edwin Catmull — Edwin Catmull, Ph.D. (born 1945 in Parkersburg, West Virginia) is an Academy Award winning computer scientist and current president of Walt Disney Animation Studios and Pixar Animation Studios. As a computer scientist, Catmull has contributed to… …   Wikipedia

• List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

• List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

• Conway polyhedron notation — This example chart shows how 11 new forms can be derived from the cube using 3 operations. The new polyhedra are shown as maps on the surface of the cube so the topological changes are more apparent. Vertices are marked in all forms with circles …   Wikipedia