Manifold decomposition

Manifold decomposition

In topology, a branch of mathematics, a manifold M may be decomposed or split by writing M as a combination of smaller pieces. When doing so, one must specify both what those pieces are and how they are put together to form M.

Manifold decomposition works in two directions: one can start with the smaller pieces and build up a manifold, or start with a large manifold and decompose it. The latter has proven a very useful way to study manifolds: without tools like decomposition, it is sometimes very hard to understand a manifold. In particular, it has been useful in attempts to classify 3-manifolds and also in proving the higher dimensional Poincaré conjecture.

The table below is a summary of the various manifold-decomposition techniques. The column labeled "M" indicates what kind of manifold can be decomposed; the column labeled "How it is decomposed" indicates how, starting with a manifold, one can decompose it into smaller pieces; the column labeled "The pieces" indicates what the pieces can be; and the column labeled "How they are combined" indicates how the smaller pieces are combined to make the large manifold.

Type of decomposition M How it is decomposed The pieces How they are combined
Triangulation Depends on dimension. In dimension 3, a theorem by Edwin E. Moise gives that every 3-manifold has a unique triangulation, unique up to common subdivision. In dimension 4, not all manifolds are triangulable. For higher dimensions, general existence of triangulations is unknown. simplices Glue together pairs of codimension-one faces
Jaco-Shalen/Johannson torus decomposition Irreducible, orientable, compact 3-manifolds Cut along embedded tori Atoroidal or Seifert-fibered 3-manifolds Union along their boundary, using the trivial homeomorphism
Prime decomposition Essentially surfaces and 3-manifold. The decomposition is unique when the manifold is orientable. Cut along embedded spheres; then union by the trivial homeomorphism along the resultant boundaries with disjoint balls. Prime manifolds Connected sum
Heegaard splitting closed, orientable 3-manifolds Two handlebodies of equal genus Union along the boundary by some homeomorphism
Handle decomposition Any compact (smooth) n-manifold (and the decomposition is never unique) Through Morse functions a handle is associated to each critical point. Balls (called handles) Union along a subset of the boundaries. Note that the handles must generally be added in a specific order.
Haken hierarchy Any Haken manifold Cut along a sequence of incompressible surfaces 3-balls
Disk decomposition Certain compact, orientable 3-manifolds Suture the manifold, then cut along special surfaces (condition on boundary curves and sutures...) 3-balls
Open book decomposition Any closed orientable 3-manifold a link and a family of 2-manifolds with boundary that link
Trigenus compact, closed 3-manifolds Surgeries three orientable handlebodies Unions along subsurfaces on boundaries of handlebodies

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Decomposition (disambiguation) — Decomposition may refer to the following: Decomposition, biological process through which organic material is reduced Chemical decomposition or analysis, in chemistry, is the fragmentation of a chemical compound into elements or smaller compounds …   Wikipedia

  • Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… …   Wikipedia

  • JSJ decomposition — In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: Irreducible orientable closed (i.e., compact and without boundary) 3 manifolds have a unique (up to isotopy)… …   Wikipedia

  • Handle decomposition — In mathematics, a handle decomposition of an n manifold M is a representation of that manifold as an exhaustion:M 0 subset M 1 subset dots subset Mwhere each M i is obtained from M {i 1}by attaching a n i handle. Handle decompositions are never… …   Wikipedia

  • Haken manifold — In mathematics, a Haken manifold is a compact, P² irreducible 3 manifold that contains a two sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable,… …   Wikipedia

  • Ricci decomposition — In semi Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a pseudo Riemannian manifold into pieces with useful individual algebraic properties. This decomposition is of fundamental importance in… …   Wikipedia

  • Open book decomposition — In mathematics, an open book decomposition (or simply an open book) is a decomposition of a closed oriented 3 manifold M into a union of surfaces (necessarily with boundary) and solid tori. Open books have relevance to contact geometry, with a… …   Wikipedia

  • Almost complex manifold — In mathematics, an almost complex manifold is a smooth manifold equipped with smooth linear complex structure on each tangent space. The existence of this structure is a necessary, but not sufficient, condition for a manifold to be a complex… …   Wikipedia

  • 3-manifold — In mathematics, a 3 manifold is a 3 dimensional manifold. The topological, piecewise linear, and smooth categories are all equivalent in three dimensions, so little distinction is usually made in whether we are dealing with say, topological 3… …   Wikipedia

  • 4-manifold — In mathematics, 4 manifold is a 4 dimensional topological manifold. A smooth 4 manifold is a 4 manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”