 Erasure code

In information theory, an erasure code is a forward error correction (FEC) code for the binary erasure channel, which transforms a message of k symbols into a longer message (code word) with n symbols such that the original message can be recovered from a subset of the n symbols. The fraction r=k/n is called the code rate, the fraction k’/k, where k’ denotes the number of symbols required for recovery, is called reception efficiency.
Contents
Optimal erasure codes
Optimal erasure codes have the property that any k out of the n code word symbols are sufficient to recover the original message (i.e., they have optimal reception efficiency). Optimal erasure codes are maximum distance separable codes (MDS codes).
Optimal codes are often costly (in terms of memory usage, CPU time, or both) when n is large. Except for very simple schemes, practical solutions usually have quadratic encoding and decoding complexity. Using FFT techniques, the complexity may be reduced to O(n log(n)); however, this is not practical.
Parity check
Parity check is the special case where n = k + 1. From a set of k values , a checksum is computed and appended to the k source values:
.
The set of k+1 values is now consistent with regard to the checksum. If one of these values, v_{e}, is erased, it can be easily recovered by summing the remaining variables:
.Polynomial oversampling
Example: Errmail (k=2)
In the simple case where k=2, redundancy symbols may be created by sampling different points along the line between the two original symbols. This is pictured with a simple example, called errmail:
Alice wants to send her telephone number (555629) to Bob using errmail. Errmail works just like email, except
 About half of all the mail gets lost.^{[1]}
 Messages longer than 5 characters are illegal.
 It is very expensive (similar to airmail).
Instead of asking Bob to acknowledge the messages she sends, Alice devises the following scheme.
 She breaks her telephone number up into two parts a=555, b=629, and sends 2 messages – "A=555" and "B=629" – to Bob.
 She constructs a linear function, f(i) = a + (b − a)(i − 1), in this case f(i) = 555 + 74(i − 1).
 She computes the values f(3), f(4), and f(5), and then transmits three redundant messages: "C=703", "D=777" and "E=851".
Bob knows that the form of f(k) is f(i) = a + (b − a)(i − 1), where a and b are the two parts of the telephone number. Now suppose Bob receives "D=777" and "E=851".
Bob can reconstruct Alice's phone number by computing the values of a and b from the values (f(4) and f(5)) he has received. Bob can perform this procedure using any two errmails, so the erasure code in this example has a rate of 40%.
Note that Alice cannot encode her telephone number in just one errmail, because it contains six characters, and the maximum length of one errmail message is five characters. If she sent her phone number in pieces, asking Bob to acknowledge receipt of each piece, at least four messages would have to be sent anyway (two from Alice, and two acknowledgments from Bob). So the erasure code in this example, which requires five messages, is quite economical.
This example is a little bit contrived. For truly generic erasure codes that work over any data set, we would need something other than the f(i) given.
General Case
The linear construction above can be generalized to polynomial interpolation. Additionally, points are now computed over a finite field.
First we choose a finite field F with order of at least n, but usually a power of 2. The sender numbers the data symbols from 0 to k  1 and sends them. He then constructs a (Lagrange) polynomial p(x) of order k such that p(i) is equal to data symbol i. He then sends p(k), ..., p(n  1). The receiver can now also use polynomial interpolation to recover the lost packets, provided he receives k symbol successfully. If the order of F is less than 2^b, where b is the number of bits in a symbol, then multiple polynomials can be used.
The sender can construct symbols k to n1 'on the fly', i.e., distribute the workload evenly between transmission of the symbols. If the receiver wants to do his calculations 'on the fly', he can construct a new polynomial q, such that q(i) = p(i) if symbol i < k was received successfully and q(i) = 0 when symbol i < k was not received. Now let r = p  q. Firstly we know that r(i)=0 if symbol i < k has been received successfully. Secondly, if symbol i >= k has been received successfully, then r(i)=p(i)  q(i) can be calculated. So we have enough data points to construct r and evaluate it to find the lost packets. So both the sender and the receiver require O(n (n  k)) operations and only O(n  k) space for operating 'on the fly'.
Real world implementation
This process is implemented by ReedSolomon codes, with code words constructed over a finite field using a Vandermonde matrix.
Nearoptimal erasure codes
Nearoptimal erasure codes require (1+ε)k symbols to recover the message (where ε>0). Reducing ε can be done at the cost of CPU time. Nearoptimal erasure codes trade correction capabilities for computational complexity: practical algorithms can encode and decode with linear time complexity.
Fountain codes (also known as rateless erasure codes) are notable examples of nearoptimal erasure codes. They can transform a k symbol message into a practically infinite encoded form, i.e., they can generate an arbitrary amount of redundancy symbols that can all be used for error correction. Receivers can start decoding after they have received slightly more than k encoded symbols.
Regenerating Codes address the issue of rebuilding (also called repairing) lost encoded fragments from existing encoded fragments. This issue arises in distributed storage systems where communication to maintain encoded redundancy is a problem.
Examples
Near optimal erasure codes
 Tornado codes
 Lowdensity paritycheck codes
Near optimal fountain (rateless erasure) codes
 Online codes
 LT codes
 Raptor codes
Optimal erasure codes
 Parity: used in redundant array of independent disks
 ReedSolomon coding
 any other MDS code
 Regenerating Codes^{[2]} see also [2].
See also
 Forward error correction codes.
References
External links
 Software FEC in computer communications by Luigi Rizzo describes optimal erasure correction codes
 Feclib is a near optimal extension to Luigi Rizzo's work that uses band matrices. Many parameters can be set, like the size of the width of the band and size of the finite field. It also successfully exploits the large register size of modern CPUs. How it compares to the near optimal codes mentioned above is unknown.
 Coding for Distributed Storage wiki for regenerating codes and rebuilding erasure codes.
Categories:
Wikimedia Foundation. 2010.
Look at other dictionaries:
erasure code — noun A forward error correction (FEC) code for the binary erasure channel, which transforms a message of k symbols into a longer message with n symbols such that the original message can be recovered from a subset of the n symbols … Wiktionary
Erasure (disambiguation) — Erasure is an English pop group formed during the mid 1980s.Erasure may also refer to:* Erasure (logic), a property of logical systems * Erasure code * Erasure poetryee also* Eraser (disambiguation) … Wikipedia
Code 46 — film poster Directed by Michael Winterbottom Produced by … Wikipedia
Code rate — In telecommunication and information theory, the code rate (or information rate[1]) of a forward error correction code is the proportion of the data stream that is useful (non redundant). That is, if the code rate is k/n, for every k bits of… … Wikipedia
Raptor code — In computer science, raptor codes are one of the first known classes of fountain codes with linear time encoding and decoding. They were invented by Amin Shokrollahi in 2000/2001 and were first published in 2004 as an extended abstract.Raptor… … Wikipedia
fountain code — noun A rateless erasure code … Wiktionary
LT code — In computer science, LT codes (Luby Transform codes) are the first class of practical fountain codes that are near optimal erasure correcting codes invented by Michael Luby in 1998 and published in 2002. [http://ieeexplore.ieee.org/xpl/freeabs… … Wikipedia
Data erasure — (also called data clearing or data wiping) is a software based method of overwriting data that completely destroys all electronic data residing on a hard disk drive or other digital media. Permanent data erasure goes beyond basic file deletion… … Wikipedia
Binary erasure channel — A binary erasure channel (or BEC) is a common communications channel model used in coding theory and information theory. In this model, a transmitter sends a bit (a zero or a one), and the receiver either receives the bit or it receives a message … Wikipedia
Lowdensity paritycheck code — In information theory, a low density parity check code (LDPC code) is an error correcting code, a method of transmitting a message over a noisy transmission channel. [David J.C. MacKay (2003) Information theory, inference and learning algorithms … Wikipedia