 Schur multiplier

In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by Issai Schur (1904) in his work on projective representations.
Contents
Examples and properties
The Schur multiplier M(G) of a finite group G is a finite abelian group whose exponent divides the order of G. If a Sylow psubgroup of G is cyclic for some p, then order of M(G) is not divisible by p. In particular, if all Sylow psubgroups of G are cyclic, then M(G) is trivial.
For instance, the Schur multiplier of the nonabelian group of order 6 is the trivial group since every Sylow subgroup is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2groups has order 2.
The Schur multipliers of the finite simple groups are given at the list of finite simple groups. The covering groups of the alternating and symmetric groups are of considerable recent interest.
Relation to projective representations
Schur's original motivation for studying the multiplier was to classify projective representations of a group, and the modern formulation of his definition is the second cohomology group H^{2}(G,C^{×}). A projective representation is much like a group representation except that instead of a homomorphism into the general linear group GL(n,C), one takes a homomorphism into the projective general linear group PGL(n,C). In other words, a projective representation is a representation modulo the center.
Schur (1904, 1907) showed that every finite group G has associated to it at least one finite group C, called a Schur cover, with the property that every projective representation of G can be lifted to an ordinary representation of C. The Schur cover is also known as a covering group or Darstellungsgruppe. The Schur covers of the finite simple groups are known, and each is an example of a quasisimple group. The Schur cover of a perfect group is uniquely determined up to isomorphism, but the Schur cover of a general finite group is only determined up to isoclinism.
Relation to central extensions
The study of such covering groups led naturally to the study of central and stem extensions.
A central extension of a group G is an extension
 1 → K → C → G → 1
where K ≤ Z(C) is a subgroup of the center of C.
A stem extension of a group G is an extension
 1 → K → C → G → 1
where K ≤ Z(C) ∩ C′ is a subgroup of the intersection of the center of C and the derived subgroup of C; this is more restrictive than central.
If the group G is finite and one considers only stem extensions, then there is a largest size for such a group C, and for every C of that size the subgroup K is isomorphic to the Schur multiplier of G. If the finite group G is moreover perfect, then C is unique up to isomorphism and is itself perfect. Such C are often called universal perfect central extensions of G, or covering group (as it is a discrete analog of the universal covering space in topology). If the finite group G is not perfect, then its Schur covering groups (all such C of maximal order) are only isoclinic.
It is also called more briefly a universal central extension, but note that there is no largest central extension, as the direct product of G and an abelian group form a central extension of G of arbitrary size.
Stem extensions have the nice property that any lift of a generating set of G is a generating set of C. If the group G is presented in terms of a free group F on a set of generators, and a normal subgroup R generated by a set of relations on the generators, so that G ≅ F/R, then the covering group itself can be presented in terms of F but with a smaller normal subgroup S, C ≅ F/S. Since the relations of G specify elements of K when considered as part of C, one must have S ≤ [F,R].
In fact if G is perfect, this is all that is needed: C ≅ [F,F]/[F,R] and M(G) ≅ K ≅ R/[F,R]. Because of this simplicity, expositions such as (Aschbacher 2000, §33) handle the perfect case first. The general case for the Schur multiplier is similar but ensures the extension is a stem extension by restricting to the derived subgroup of F: M(G) ≅ (R ∩ [F, F])/[F, R]. These are all slightly later results of Schur, who also gave a number of useful criteria for calculating them more explicitly.
Relation to efficient presentations
In combinatorial group theory, a group often originates from a presentation. One important theme in this area of mathematics is to study presentations with as few relations as possible, such as one relator groups like BaumslagSolitar groups. These groups are infinite groups with two generators and one relation, and an old result of Schreier shows that in any presentation with more generators than relations, the resulting group is infinite. The borderline case is thus quite interesting: finite groups with the same number of generators as relations are said to have an efficient presentation. For a group to have an efficient presentation, the group must have a trivial Schur multiplier because the minimum number of generators of the Schur multiplier is always less than or equal to the difference between the number of relations and the number of generators.
A fairly recent topic of research is to find efficient presentations for all finite simple groups with trivial Schur multipliers. Such presentations are in some sense nice because they are usually short, but they are difficult to find and to work with because they are illsuited to standard methods such as coset enumeration.
Relation to topology
In topology, groups can often be described as finitely presented groups and a fundamental question is to calculate their integral homology . In particular, the second homology plays a special role and this led Hopf to find an effective method for calculating it. The method in (Hopf 1942) is also known as Hopf's integral homology formula and is identical to Schur's formula for the Schur multiplier of a finite, finitely presented group:
where and F is a free group. The same formula also holds when G is a perfect group.^{[1]}
The recognition that these formulas were the same led Eilenberg and Mac Lane to the creation of cohomology of groups. In general, where the star denotes the algebraic dual group, and when G is finite, there is an unnatural isomorphism .
A perfect group is one whose first integral homology vanishes. A superperfect group is one whose first two homology groups vanish. The Schur covers of finite perfect groups are superperfect. An acyclic group is a group all of whose reduced integral homology vanishes.
Applications
The second algebraic Kgroup K_{2}(R) of a commutative ring R can be identified with the second homology group
of the group E(R) of (infinite) elementary matrices with entries in R.^{[2]}
See also
References
 ^ Rosenberg, Jonathan (1994), Algebraic Ktheory and its applications, Graduate Texts in Mathematics, 147, Berlin, New York: SpringerVerlag, ISBN 9780387942483, MR1282290 Errata, http://books.google.com/books?id=TtMkTEZbYoYC, Theorems 4.1.3, 4.1.19
 ^ Rosenberg, Jonathan (1994), Algebraic Ktheory and its applications, Graduate Texts in Mathematics, 147, Berlin, New York: SpringerVerlag, ISBN 9780387942483, MR1282290 Errata, http://books.google.com/books?id=TtMkTEZbYoYC, Corollary 4.2.10
 Aschbacher, Michael (2000), Finite group theory, Cambridge Studies in Advanced Mathematics, 10 (2nd ed.), Cambridge University Press, ISBN 9780521781459; 9780521786751, MR1777008
 Hopf, Heinz (1942), "Fundamentalgruppe und zweite Bettische Gruppe", Commentarii Mathematici Helvetici 14: 257–309, doi:10.1007/BF02565622, ISSN 00102571, MR0006510
 Kuzmin, L.V. (2001), "Schur multiplicator", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 9781556080104, http://eom.springer.de/S/s083460.htm
 Rotman, Joseph J. (1994), An introduction to the theory of groups, Berlin, New York: SpringerVerlag, ISBN 9780387942858
 Schur, J. (1904), "Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen." (in German), Journal für die reine und angewandte Mathematik 127: 20–50, ISSN 00754102, JFM 35.0155.01, http://resolver.sub.unigoettingen.de/purl?GDZPPN002165511
 Schur, J. (1907), "Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen." (in German), Journal für die reine und angewandte Mathematik 132: 85–137, ISSN 00754102, JFM 38.0174.02, http://resolver.sub.unigoettingen.de/purl?GDZPPN00216633X
 Van der Kallen, Wilberd (1984), "Review: F. Rudolf Beyl and Jürgen Tappe, Group extensions, representations, and the Schur multiplicator", Bulletin of the American Mathematical Society 10 (2): 330–333, http://projecteuclid.org/euclid.bams/1183551591
 Wiegold, J. (1982), "The Schur multiplier: an elementary approach", Groups–St. Andrews 1981 (St. Andrews, 1981), London Math. Soc. Lecture Note Ser., 71, Cambridge University Press, pp. 137–154, MR679156
Categories:
Wikimedia Foundation. 2010.
Look at other dictionaries:
Multiplicateur de Schur — En mathématiques, plus précisément en théorie des groupes, le multiplicateur de Schur est le deuxième groupe d homologie d un groupe G à coefficients entiers, . Si le groupe est présenté en termes d un groupe libre F sur un ensemble de… … Wikipédia en Français
Issai Schur — (January 10, 1875 in Mogilyov ndash; January 10, 1941 in Tel Aviv) was a mathematician who worked in Germany for most of his life. He studied at Berlin. He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at Bonn,… … Wikipedia
Multiplicateur De Schur — En mathématiques, plus précisément en théorie des groupes, le multiplicateur de Schur, nommé en l honneur de Issai Schur, est le deuxième groupe d homologie d un groupe G avec des coefficients dans les entiers, . Si le groupe est présenté en… … Wikipédia en Français
Multiplicateur de schur — En mathématiques, plus précisément en théorie des groupes, le multiplicateur de Schur, nommé en l honneur de Issai Schur, est le deuxième groupe d homologie d un groupe G avec des coefficients dans les entiers, . Si le groupe est présenté en… … Wikipédia en Français
List of finite simple groups — In mathematics, the classification of finite simple groups states thatevery finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type (including the Tits group, which strictly speaking is not of Lie type),or… … Wikipedia
Covering groups of the alternating and symmetric groups — In the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were… … Wikipedia
Group of Lie type — In mathematics, a group of Lie type G(k) is a (not necessarily finite) group of rational points of a reductive linear algebraic group G with values in the field k. Finite groups of Lie type form the bulk of nonabelian finite simple groups.… … Wikipedia
Projective representation — In the mathematical field of representation theory, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to :PGL( V ,F) = GL( V ,F)/F lowast; where GL( V ,F) is the automorphism group of… … Wikipedia
Symmetric group — Not to be confused with Symmetry group. A Cayley graph of the symmetric group S4 … Wikipedia
Coxeter group — In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry … Wikipedia