Instruction scheduling

Instruction scheduling

In computer science, instruction scheduling is a compiler optimization used to improve instruction-level parallelism, which improves performance on machines with instruction pipelines. Put more simply, without changing the meaning of the code, it tries to
* Avoid pipeline stalls by rearranging the order of instructions.
* Avoid illegal or semantically ambiguous operations (typically involving subtle instruction pipeline timing issues or non-interlocked resources.)

The pipeline stalls can be caused by structural hazards (processor resource limit), data hazards (output of one instruction needed by another instruction) and control hazards (branching).

Data hazards

Instruction scheduling is typically done on a single basic block. In order to determine whether rearranging the block's instructions in a certain way preserves the behavior of that block, we need the concept of a "data dependency". There are three types of dependencies, which also happen to be the three data hazards:
# Read after Write (RAW or "True"): Instruction 1 writes a value used later by Instruction 2. Instruction 1 must come first, or Instruction 2 will read the old value instead of the new.
# Write after Read (WAR or "Anti"): Instruction 1 reads a location that is later overwritten by Instruction 2. Instruction 1 must come first, or it will read the new value instead of the old.
# Write after Write (WAW or "Output"): Two instructions both write the same location. They must occur in their original order.

Technically, there is a fourth type, Read after Read (RAR or "Input"): Both instructions read the same location. Input dependence does not constrain the execution order of two statements, but it is useful in scalar replacement of array elements.

To make sure we respect the three types of dependencies, we construct a dependency graph, which is a directed graph where each vertex is an instruction and there is an edge from I1 to I2 if I1 must come before I2 due to a dependency. If loop-carried dependencies are left out, the dependency graph is a directed acyclic graph. Then, any topological sort of this graph is a valid instruction schedule. The edges of the graph are usually labelled with the latency of the dependence. This is the number of clock cycles that needs to elapse before the pipeline can proceed with the target instruction without stalling.


The simplest algorithm to find a topological sort is frequently used and is known as list scheduling. Conceptually, it repeatedly selects a source of the dependency graph, appends it to the current instruction schedule and removes it from the graph. This may cause other vertices to be sources, which will then also be considered for scheduling. The algorithm terminates if the graph is empty.

To arrive at a good schedule, stalls should be prevented. This is determined by the choice of the next instruction to be scheduled. A number of heuristics are in common use:

* The processor resources used by the already scheduled instructions are recorded. If a candidate uses a resource that is occupied, its priority will drop.
* If a candidate is scheduled closer to its predecessors than the associated latency its priority will drop.
* If a candidate lies on the critical path of the graph, its priority will rise. This heuristic provides some form of look-ahead in an otherwise local decision process.
* If choosing a candidate will create many new sources, its priority will rise. This heuristic tends to generate more freedom for the scheduler.

The phase order of Instruction Scheduling

Instruction scheduling may be done either before or after register allocation or both before and after it. The advantage of doing it before register allocation is that this results in maximum parallelism. The disadvantage of doing it before register allocation is that this can result in the register allocator needing to use a number of registers exceeding those available. This will cause spill/fill code to be introduced which will reduce the performance of the section of code in question.

If the architecture being scheduled has instruction sequences that have potentially illegal combinations (due to a lack of instruction interlocks) the instructions must be scheduled after register allocation. This second scheduling pass will also improve the placement of the spill/fill code.

If scheduling is only done after register allocation then there will be false dependencies introduced by the register allocation that will limit the amount of instruction motion possible by the scheduler.

Types of Instruction Scheduling

There are several types of instruction scheduling:
#Basic Block Scheduling: instructions can't move across basic block boundaries.
#Global scheduling: instructions can move across basic block boundaries.
#Modulo Scheduling: another name for software pipelining, which is a form of instruction scheduling that interleaves different iterations of a loop.
#Trace scheduling: a form of global scheduling that tries to optimize the control flow path that is executed most often.

ee also

* Code generation
* Register allocation
* Instruction selection

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Very long instruction word — or VLIW refers to a CPU architecture designed to take advantage of instruction level parallelism (ILP). A processor that executes every instruction one after the other (i.e. a non pipelined scalar architecture) may use processor resources… …   Wikipedia

  • Explicitly parallel instruction computing — (EPIC) is a term coined in 1997 by the HP Intel alliance [cite web url = 1999 111.pdf title = EPIC: An Architecture for Instruction Level Parallel Processors accessdate = 2008 05 08 last = Schlansker and …   Wikipedia

  • Block scheduling — is a type of academic scheduling in which each student has fewer classes per day for a longer period of time. This is intended to result in more time for teaching due to less class switching and preparation. It also allows for a student to take… …   Wikipedia

  • Trace scheduling — is an optimization technique used in compilers for computer programs.A compiler often can, by rearranging its generated machine instructions for faster execution, improve program performance. Trace scheduling is one of many known techniques for… …   Wikipedia

  • Direct Instruction — This article discusses a particular pedagogical model, as is found in DISTAR and related programs. For more general discussion see direct instruction. Direct Instruction (DI) is an instructional method that is focused on systematic curriculum… …   Wikipedia

  • Direct instruction — This article discusses direct instruction as a general concept. For DISTAR or Englemann and Becker s Direct Instruction programs, please see those articles. Direct instruction in a classroom (CGI by Maximilian Schönherr) …   Wikipedia

  • No instruction set computing — (NISC) is a computing architecture and compiler technology for designing highly efficient custom processors and hardware accelerators by allowing a compiler to have low level control of hardware resources. Contents 1 Overview 2 History 3 See also …   Wikipedia

  • History of general purpose CPUs — The history of general purpose CPUs is a continuation of the earlier history of computing hardware. 1950s: early designs Each of the computer designs of the early 1950s was a unique design; there were no upward compatible machines or computer… …   Wikipedia

  • Compiler optimization — is the process of tuning the output of a compiler to minimize or maximize some attributes of an executable computer program. The most common requirement is to minimize the time taken to execute a program; a less common one is to minimize the… …   Wikipedia

  • Software pipelining — In computer science, software pipelining is a technique used to optimize loops, in a manner that parallels hardware pipelining. Software pipelining is a type of out of order execution, except that the reordering is done by a compiler (or in the… …   Wikipedia