London water supply infrastructure

London water supply infrastructure

London's Water Supply Infrastructure has developed over the centuries in line with the expansion of London and now represents a sizeable infrastructure investment. For much of London's history, private companies supplied fresh water to various parts of London from the River Thames and the River Lea. A crisis point was reached in the mid 19th century with outbreaks of cholera and general problems arising from extraction of water from the polluted Tideway, and major new facilities were built up river at Hampton and Molesey. After merger and nationalization into the Metropolitan Water Board, and later reprivatization, their modern descendent Thames Water still runs London's water supply infrastructure.

Early London water supply

Until the late 16th century, London citizens were reliant for their water supplies on water from either the River Thames, its tributaries, or one of around a dozen natural springs, including the spring at Tyburn which was connected by lead pipe to a large cistern or tank (then known as a Conduit): the Great Conduit in Cheapside. [From: 'Great Conduit (The) in Westcheap', A Dictionary of London (1918). URL: Date accessed: 10 November 2006.] "Water-related Infrastructure in Medieval London",] So that water was not abstracted for unauthorised commercial or industrial purposes, the city authorities appointed keepers of the conduits who would ensure that users such as brewers, cooks and fishmongers would pay for the water they used. Wealthy Londoners living near the a conduit pipe could obtain permission for a connection to their homes, but this did not prevent unauthorised tapping of conduits. Otherwise - particularly for households which could not take a gravity-feed - water from the conduits was provided to individual households by water carriers, or "cobs", or was abstracted from the Thames or nearby streams running into the Thames.

ixteenth century

In 1582, Dutchman Peter Morice (died 1588) developed one of the first pumped water supply systems for the City of London, powered by undershot waterwheels housed in the northernmost arches of London Bridge spanning the River Thames. The machinery was largely destroyed in the Great Fire of London in 1666 but replacements engineered by his grandson remained under the bridge until the early 19th century.

Seventeenth century

Hugh Myddleton was the driving force behind the construction of the New River, an ambitious engineering project to being fresh water from Hertfordshire to 17th century London. After the initial project encountered financial difficulties, Myddleton helped fund the project through to completion. The New River was constructed between 1609 and 1613 (being officially opened on 29 September that year), and was originally some 38 miles (60km) long. It was not initially a financial success, and cost Myddleton substantial sums, although in 1612 he was successful in securing monetary assistance from King James I. Fact|date=March 2007 The New River Company became one of the largest private water companies, supplying the City of London and other central areas.cite web |url= |title=Water-related Infrastructure in Medieval London | |accessdate=2007-03-24 ]

The construction of London's current water distribution infrastructure dates back to the Great Fire of London in 1666, which destroyed most of the city's previous water infrastructure, most of which was made of wood and lead. One waterworks not affected by the fire was at Shadwell which dated from 1660. The city's water supply and distribution infrastructure has been continuously updated and upgraded since then.

Eighteenth century

The Chelsea Waterworks Company was established in 1723 "for the better supplying the City and Liberties of Westminster and parts adjacent with water"."The London Encyclopaedia", Ben Weinreb & Christopher Hibbert, Macmillan, 1995, ISBN 0-333-57688-8] The company received a Royal Charter on 8 March 1723. [ [ Royal Charters, Privy Council website] ]

Waterworks were established in East London, at West Ham in 1743 and at Lea Bridge before 1767.

The Borough Waterworks Company was formed in 1770, originally supplying water to a brewery and the surrounding area, which spanned the distance between London and Southwark Bridges. The adjacent area was supplied by the London Bridge Waterworks Company.

The Lambeth Waterworks Company was founded in 1785 to supply water to south and west London. It was established on the south bank of the River Thames close to the present site of Hungerford Bridge where the Royal Festival Hall now stands. The first water intake of the company was on the south side of the river and supplied directly from the river. After complaints that the water was foul, the intake was moved to the middle of the river. [ [ UCLA Department of Epidemiology "Lambeth Waterwork history"] ]

Nineteenth century

New companies

As London spread in the 19th century, new facilities were needed to service the increasing population in newly developed areas. Several new water supply companies were established leading to an arrangement of up to nine private water companies each with a geographic monopoly.

The Lambeth Waterworks company expanded in 1802 to supply Kennington and about this time replaced its wooden pipes with iron ones. [ [ UCLA Department of Epidemiology "Lambeth Waterwork history"] ]

The South London Waterworks Company was established by private act of parliament in 1805. The company extracted water from the Thames beside Vauxhall Bridge.

The West Middlesex Waterworks Company was founded in 1806 to supply water to the Marylebone and Paddington areas of London. In 1808 the company installed cast iron pipes to supply water from its intakes at Hammersmith. [ [ UCLA Department of Epidemiology "West Middlesex Waterworks history"] ]

The East London Waterworks Company was founded by Act of Parliament in 1806, and also acquired existing waterworks at Shadwell, Lea Bridge and West Ham.

The Grand Junction Waterworks Company was created in 1811 to take advantage of a clause in the Grand Junction Canal Company's Act which allowed them to supply water brought by the canal from the River Colne and River Brent, and from a reservoir in the north-west Middlesex supplied by land drainage. It was thought that these waters would be better than those of the Thames, but in fact they were found to be of poor quality and insufficient to meet demand. After trying to resolve these problems the company resorted to taking their supply from the River Thames at a point near Chelsea Hospital [ [ "Notting Hill and Bayswater", Old and New London: Volume 5 (1878), pp. 177-188. Date accessed: 22 September 2008] ]


Although the legislation that established the London water companies intended that they would compete for customers, in 1815 the East London company drew up a legal agreement with the New River Company defining a boundary between their areas of supply.

The London Bridge Waterworks Company was dissolved in 1822, and its water supply licence was purchased by the New River Company. Later that same year, the Borough Waterworks Company purchased the London Bridge licence from the New River Company, and it was renamed the Southwark Water Company. The company extracted water from the River Thames using steam engines to pump it to a cistern at the top of a sixty foot high tower."Southwark & Vauxhall Water Company - Brief History during the Snow era", UCLA Department of Epidemiolgy]

The West Middlesex Waterworks Company established a 3.5 million gallon reservoir at Campden Hill near Notting Hill. In 1825 the company built a new reservoir at Barrow Hill next to Primrose Hill in North London.

In 1829, the East London Waterworks Company moved their source of water further up river to Lea Bridge as a result of pollution caused by population growth. Clean water was now abstracted from the natural channel which had been by-passed by the Hackney Cut, to a new reservoir at Old Ford. [ [ "East London Waterworks Company, Brief history during the Snow era, 1813 - 1858"] (UCLA Epidemiology), accessed October 1 2007] In 1830 the company gained a lease on the existing reservoir at Clapton.

In 1832 the Lambeth Waterworks Company built a reservoir at Streatham Hill, and in 1834 obtained an Act of Parliament to extend its area of supply. In the same year, the Company purchased 16 acres of land in Brixton and built a reservoir and works on Brixton Hill adjacent to Brixton Prison. [ [ "Stockwell: Brixton Hill area", Survey of London: volume 26: Lambeth: Southern area (1956), pp. 100-105. Date accessed: 22 September 2008] ]

In 1833 the South London Waterworks Company was supplying 12,046 houses with approximately 12,000 gallons of water.Joseph Fletcher, "Historical and Statistical Account of the present System of Supplying the Metropolis with Water" in "Journal of the Statistical Society of London", Vol. 8, No. 2. (Jun., 1845), pp. 148-181.] In 1834, the company was renamed the Vauxhall Water Company.

The Grand Junction Waterworks Company built a pumping station near Kew Bridge at Brentford in 1838 to house its new steam pump and two similar pumps purchased from Boulton, Watt and Company in 1820. The water was taken from the middle of the river and pumped into filtering reservoirs and to a 200 ft high water tower to provide gravity feed to the area. A six to seven mile main took the water to a reservoir on Campden Hill near Notting Hill capable of containing 6 million gallons.

In 1841 the East London Waterworks Company was supplying 36,916 houses.

On 10 January 1845 the Southwark Waterworks Company, and the Vauxhall Waterworks Company submitted a memorial to the Health of Towns Commissioners proposing amalgamation. The bill promoted by the two companies successfully passed through parliament, and the Southwark and Vauxhall Waterworks Company was formed later that year. The area supplied by the SVWC was centred on the Borough of Southwark, reaching east to Rotherhithe, south to Camberwell and in the west including Battersea and parts of Clapham and Lambeth.John Weale, "The Pictorial Handbook of London", London, 1854] The amalgamated company established waterworks at Battersea Fields with two depositing reservoirs with a capacity of 32 million gallons; and two filtering reservoirs holding 11 million gallons. In 1850 the company's water was described by the microbiologist Arthur Hassall as "the most disgusting which I have ever examined".

In 1845 the limits of supply of the East London Waterworks Company were described as "all those portions of the Metropolis, and its suburbs, which lie to the east of the city, Shoreditch, the Kingsland Road, and Dalston; extending their mains even across the river Lea into Essex, as far as West Ham."Joseph Fletcher, "Historical and Statistical Account of the present System of Supplying the Metropolis with Water", Journal of the Statistical Society of London, Vol. 8, No. 2. (June, 1845)] The water supplied by the company was taken from the Lea, with waterworks on convert|30|acre|km2|2 of land at Old Ford.

Metropolis Water Act

The companies often provided inadequate quantities of water which was often contaminated, as was famously discovered by John Snow during the 1854 cholera epidemic. Population growth in London had been very rapid (more than doubling between 1800 and 1850) without an increase in infrastructure investment. The Metropolis Water Act 1852 was enacted in order to "make provision for securing the supply to the Metropolis of pure and wholesome water. Under the Act, it became unlawful for any water company to extract water for domestic use from the tidal reaches of the Thames after 31 August 1855, and from 31 December 1855 all such water was required to be "effectually filtered". ["An Act to make better Provision respecting the Supply of Water to the Metropolis", (15 & 16 Vict. C.84)] The Metropolitan Commission of Sewers was formed, water filtration was made compulsory, and new water intakes on the Thames were established above Teddington Lock.

The Chelsea Waterworks Company and the Lambeth Waterworks Company, who shared the services of James Simpson, established facilities at Seething Wells between Thames Ditton and Surbiton. The Grand Junction, West Middlesex and Southwark and Vauxhall Waterworks Companies set up facilities above Molesey Lock at Hampton designed by Joseph Quick. The Stain Hill Reservoirs and Sunnyside Reservoir were constructed in Hampton by the SVWC in 1855, with a 36-inch diameter main to Battersea. A third reservoir was opened later in the year between Nunhead Cemetery and Peckham Rye. In the mid 19th century the East London Waterworks Company purchased the Coppermill at Walthamstow and modified it to drive a water pump to assist in the building of reservoirs on nearby marshland in the Lea Valley . [ [ The Coppermill] Retrieved December 14 2007] The company built a series of reservoirs which were High Maynard Reservoir, Low Maynard Reservoir, five linked numbered reservoirs making the Walthamstow Reservoirs, the East Warwick Reservoir and the West Warwick Reservoir.

In 1872 the Lambeth Waterworks Company moved upstream on the Thames to Molesey, followed by the Chelsea Waterworks Company. They built the Molesey Reservoirs there in 1872.

The East London Waterworks Company replaced their reservoir at Clapton by a new reservoir at Stamford Hill in 1891. [ [ "Hackney: Public services", A History of the County of Middlesex: Volume 10: Hackney (1995), pp. 108-15] (British History Online) accessed October 1 2007]

In 1897 the New River Company started developing the treatment works at Kempton Park to supply additional water to their facilities at Cricklewood.

In 1898 the SVWC started work on the Bessborough Reservoir and the Knight Reservoir which were across the river from Hampton at Molesey. By 1903 the SVWC supplied a population of 860,173 in 128,871 houses of which 122,728 (95.3%) had a constant supply. [Percy Ashley, "The Water, Gas, and Electric Light Supply of London", "Annals of the American Academy of Political and Social Science, Vol. 27, Municipal Ownership and Municipal Franchises" (January 1906), pp. 20-36] The Lambeth Waterworks company started work on Island Barn Reservoir at Molesey in 1900.

Twentieth century

The private water companies were nationalised at the beginning of the 20th century. The Metropolis Water Act 1902 (2 Edw.7, c.41) created the Metropolitan Water Board. It was founded in 1903 and as originally constituted in the Act had 67 members; 65 of these were nominated by local authorities, who appointed a paid chairman and vice-chairman. The board compulsorily acquired the following water companies:
* The New River Company
* The East London Waterworks Company
* The Southwark and Vauxhall Waterworks Company
* The West Middlesex Waterworks Company
* The Lambeth Waterworks Company
* The Chelsea Waterworks Company
* The Grand Junction Waterworks Company
* The Staines Reservoirs Joint CommitteeAlso acquired at no cost were the water undertakings of Tottenham and Enfield Urban District Councils.The MWB opened the East London Waterworks reservoirs Banbury Reservoir and Lockwood Reservoir, and the Bessborough Reservoir, Knight Reservoir and Island Barn Reservoirs at Molesey. It also opened the Kempton Park Reservoirs in around 1907.

In 1910, extraction facilities were opened at Hythe End and the Staines Reservoir Aqueduct was built to supply water to Hampton. The Metropolitan Water Board Railway was opened in 1916 to carry coal from the river at Hampton to Kempton Park. An engine house with powerful steam engines was opened at Kempton Park in 1929, which has now become Kempton Park Steam Engines museum.

The MWB opened a succession of reservoirs - King George V Reservoir, (Lea Valley) in 1912, Queen Mary Reservoir (Ashford) in 1925, King George VI Reservoir (Stanwellmoor) in 1947 William Girling Reservoir (Lea Valley) in 1951, Queen Elizabeth II Reservoir (Molesey) 1962, Wraysbury Reservoir 1967, and Queen Mother Reservoir (Staines) 1976.

The Metropolitan Water Board and other local Water Boards were later combined into the Thames Water Authority, which was later privatized as Thames Water, a state-regulated private company which currently provides London's water supply.

Present day

Most of London's water still comes from the River Thames and River Lea, with the remainder being abstracted from underground sources.cite web |url= |title=London's water supply 'to dry up' |publisher=BBC News |date=October 11 2004 |accessdate=2007-03-24 ]

Much of the water piping in London is still cast iron piping which dates back to the nineteenth century and is slowly deteriorating. This has led to widespread criticism of Thames Water for the amount of water lost to leaks in its distribution network.cite web |url=,,1802686,00.html |title=Thames Water fails to plug leaks but profits rise 31% |publisher=The Guardian |accessdate=2007-03-25 |date=June 21, 2006] As of 2007, Thames Water is still in the process of a rolling program of upgrading the water supply network to use modern plastic piping.cite web |url=
title=Replacing London's Victorian water mains |accessdate=2007-03-24 |publisher=Thames Water

The single largest infrastructure project in recent years has been the creation of the Thames Water Ring Main, a "backbone network" for London's water supply.cite web |url= |title=Thames Water Ring Main Extensions |publisher=Thames Water |date=September 13 2005 |accessdate=2007-03-24 ] This connects all the waterworks, and pumping stations,

Water Treatment Works

The Water treatment works on the Ring Main are as follows.
*Ashford Common
*Kempton Park

Pumping stations

The pumping stations on the ring main are as follows.

*Surbiton — PS
*Merton — PS
*Streatham — PS
*Brixton — PS
*Battersea — PS
*Park Lane — PS
*Kew — PS
*Holland Park Avenue — PS
*Barrow Hill — PS
*New River Head — PS
*Stoke Newington — PS


*Hogsmill — Access
*Raynes Park — Access
*Mogden — Access


*Honor Oak — Underground Storage
*Barnes — balancing storage

See also

* History of London
* List of reservoirs and dams in the United Kingdom
* Metropolitan Drinking Fountain and Cattle Trough Association
* Kew Bridge Steam Museum
* London sewer system


External links

* [ History of Thames Water]
* [ Is London water safe to drink?]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Water supply — is the process of self provision or provision by third parties of water of various qualities to different users. Irrigation is covered separately. Global access to waterIn 2004 about 3.5 billion people worldwide (54% of the global population) had …   Wikipedia

  • Water supply and sanitation in Ghana — The water supply and sanitation sector in Ghana faces severe problems, partly due to a neglect of the sector until the 1990s. Tariffs were kept at a low level which was far from reflecting the real cost of the service. Economic efficiency still… …   Wikipedia

  • Water privatization — is a short hand for private sector participation in the provision of water services and sanitation, although more rarely it refers to privatization of water resources themselves. Because water services are seen as such a key public service,… …   Wikipedia

  • Infrastructure — Public infrastructure Assets and facilities Airports · Bridges · Broadband …   Wikipedia

  • London — /lun deuhn/, n. 1. Jack, 1876 1916, U.S. short story writer and novelist. 2. a metropolis in SE England, on the Thames: capital of the United Kingdom. 3. City of, an old city in the central part of the former county of London: the ancient nucleus …   Universalium

  • Water quality — A rosette sampler is used to collect samples in deep water, such as the Great Lakes or oceans, for water quality testing. Water quality is the physical, chemical and biological characteristics of water.[1] It is a measure of the condition of… …   Wikipedia

  • London City Airport — IATA: LCY – …   Wikipedia

  • London Underground infrastructure — The infrastructure of the London Underground includes 11 lines, which serve 268 stations by rail. Lines on the Underground can be classified into two types: subsurface and deep level. Lines of both types usually emerge onto the surface outside… …   Wikipedia

  • London 2012 Olympic bid — Olympic bid|2012|Summer winner = London runner up = Paris shortlisted1 = Madrid shortlisted2 = Moscow shortlisted3 = New York City logo = fullname = London, United Kingdom committee = British Olympic Association (BOA) history = 1908 Summer… …   Wikipedia

  • Infrastructure in London — Electric power supplySeveral power stations were built to generate electricity in the centre of London, including the famous power stations at Bankside and Battersea (both now disused). Bankside power station has now been converted into Tate… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.