Microwave radio relay


Microwave radio relay

Microwave radio relay is a technology for transmitting digital and analog signals, such as long-distance telephone calls and the relay of television programs to transmitters, between two locations on a line of sight radio path. In microwave radio relay, radio waves are transmitted between the two locations with directional antennas, forming a fixed radio connection between the two points. Long daisy-chained series of such links form transcontinental telephone and/or television communication systems.

How microwave radio relay links are formed

Because a line of sight radio link is made, the radio frequencies used occupy only a narrow path between stations (with the exception of a certain radius of each station). Antennas used must have a high directive effect; these antennas are installed in elevated locations such as large radio towers in order to be able to transmit across long distances. Typical types of antenna used in radio relay link installations are parabolic reflectors, shell antennas and horn radiators, which have a diameter of up to 4 meters. Highly directive antennas permit an economical use of the available frequency spectrum, despite long transmission distances.

Planning considerations

Because of the high frequencies used, a quasi-optical line of sight between the stations is generally required. Additionally, in order to form the line of sight connection between the two stations, the first Fresnel zone must be free from obstacles so the radio waves can propagate across a nearly uninterrupted path. Obstacles in the signal field cause unwanted attenuation, and are as a result only acceptable in exceptional cases. Obstacles, the curvature of the Earth, the geography of the area and reception issues arising from the use of nearby land (such as in manufacturing and forestry) are important issues to consider when planning radio links. In the planning process, it is essential that "path profiles" are produced, which provide information about the terrain and Fresnel zones affecting the transmission path. The presence of a water surface, such as a lake or river, in the mid-path region also must be taken into consideration as it can result in a near-perfect reflection (even modulated by wave or tide motions), creating multipath distortion as the two received signals ("wanted" and "unwanted") swing in and out of phase. Multipath fades are usually deep only in a small spot and a narrow frequency band, so space and frequency diversity schemes were usually applied in the third quarter of the 20th century.

The effects of atmospheric stratification cause the radio path to bend downward in a typical situation so a major distance is possible as the earth equivalent curvature increases from 6370 km to about 8500 km (a 4/3 equivalent radius effect). Rare events of temperature, humidity and pressure profile versus height, may produce large deviations and distortion of the propagation and affect transmission quality. High intensity rain and snow must also be considered as an impairment factor, especially at frequencies above 10 GHz. All previous factors, collectively known as path loss, make it necessary to compute suitable power margins, in order to maintain the link operative for a high percentage of time, like the standard 99.99% or 99.999% used in 'carrier class' services of most telecommunication operators.

Over-horizon microwave radio relay

In over-horizon, or tropospheric scatter, microwave radio relay, unlike a standard microwave radio relay link, the sending and receiving antennas do not use a line of sight transmission path. Instead, the stray signal transmission, known as "tropo-scatter" or simply "scatter," from the sent signal is picked up by the receiving station. Signal clarity obtained by this method depends on the weather and other factors, and as a result a high level of technical difficulty is involved in the creation of a reliable over horizon radio relay link. Over horizon radio relay links are therefore only used where standard radio relay links are unsuitable (for example, in providing a microwave link to an island).

Usage of microwave radio relay systems

During the 1950s the AT&T Communications system of TD radio grew to carry the majority of US Long Distance telephone traffic, as well as intercontinental television network signals. Similar systems were soon built in many countries, until the 1980s when the technology lost its share of fixed operation to newer technologies such as fiber-optic cable and optical radio relay links (of which offer larger data capacities at lower cost per bit). Communication satellites, which are also microwave radio relays, better retained their market share, especially for television.

At the turn of the century, microwave radio relay systems are being used increasingly in portable radio applications. The technology is particularly suited to this application because of lower operating costs, a more efficient infrastructure, and provision of direct hardware access to the portable radio operator.

ee also

* British Telecom microwave network
* Passive repeater
* Radio repeater
* Microwave transmission

External links

* [http://www.att.com/attlabs/reputation/timeline/51microwave.html AT&T's Microwave Radio-Relay Skyway introduced in 1951]
* [http://www.long-lines.net/documents/radio_relay_ad_51.jpgBell System 1951 magazine ad for Microwave Radio-Relay systems.]
* [http://coldwar-c4i.net/WU/WU-RCA-ad.html RCA vintage magazine ad for Microwave-Radio Relay equipment used for Western Union Telegraph Co.]
* [http://digital-microwave-radio.at-communication.com/en Digital Microwave Radio]
* [http://www.drgibson.com/towers/ AT&T Long Lines Microwave Towers Remembered]
* [http://www.porticus.org/bell/longlines.html AT&T Long Lines]

References

Microwave Radio Transmission Design Guide, Trevor Manning, Artech House, 1999


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Radio relay — Radio stations that cannot communicate directly due to distance, terrain or other difficulties sometimes use an intermediate radio relay station to relay the signals. Examples include airborne radio relay, microwave radio relay, and… …   Wikipedia

  • Relay (disambiguation) — Relay may refer to: *a station in a message forwarding system, especially for the changing of horses by couriers **Relay league **cursus publicus (Roman Empire) * Relay, an electronics component * Microwave radio relay * Relay race *… …   Wikipedia

  • Microwave transmission — The atmospheric attenuation of microwaves in dry air with a precipitable water vapor level of 0.001 mm. The downward spikes in the graph correspond to frequencies at which microwaves are absorbed more strongly, such as by oxygen molecules… …   Wikipedia

  • Microwave — This article is about the electromagnetic wave. For the cooking appliance, see Microwave oven. For other uses, see Microwaves (disambiguation). A microwave telecommunications tower on Wrights Hill in Wellington, New Zealand Microwaves, a subset… …   Wikipedia

  • Microwave link — A microwave link is a communications system that uses a beam of radio waves in the microwave frequency range to transmit video, audio, or data between two locations, which can be from just a few feet to several miles apart. Microwave links are… …   Wikipedia

  • Radio repeater — A radio repeater is a combination of a radio receiver and a radio transmitter that receives a weak or low level signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. This… …   Wikipedia

  • Radio propagation — is a term used to explain how radio waves behave when they are transmitted, or are propagated from one point on the Earth to another. [ H. P. Westman et al, (ed), Reference Data for Radio Engineers, Fifth Edition , 1968, Howard W. Sams and Co.,… …   Wikipedia

  • Radio communications during the September 11 attacks — This article reviews some of the details of radio communications at the September 11, 2001 World Trade Center attacks. [The purpose of revealing the operational details in this article is to allow operators of other communications networks and… …   Wikipedia

  • Radio propagation beacon — A radio propagation beacon is a radio beacon, whose purpose is the investigation of the propagation of radio signals. Most radio propagation beacons use amateur radio frequencies. They can be found on HF, VHF, UHF, and microwave frequencies.… …   Wikipedia

  • Radio masts and towers — Masts of the Rugby VLF transmitter in England …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.