Complex cobordism

Complex cobordism

In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute.

The generalized homology and cohomology complex cobordism theories were introduced by Atiyah (1961) using the Thom spectrum.

Contents

Spectrum of complex cobordism

The complex bordism MU*(X) of a space X is roughly the group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle. Complex bordism is a generalized homology theory, corresponding to a spectrum MU that can be described explicitly in terms of Thom spaces as follows.

The space MU(n) is the Thom space of the universal n-plane bundle over the classifying space BU(n) of the unitary group U(n). The natural inclusion from U(n) into U(n+1) induces a map from the double suspension S2MU(n) to MU(n+1). Together these maps give the spectrum MU.

Formal group laws

Milnor (1960) and Novikov (1960, 1962) showed that the coefficient ring π*(MU) (equal to the complex cobordism of a point, or equivalently the ring of cobordism classes of stably complex manifolds) is a polynomial ring Z[x1, x2,...] on infinitely many generators xi ∈ π2i(MU) of positive even degrees.

Write CP for infinite dimensional complex projective space, which is the classifying space for complex line bundles, so that tensor product of line bundles induces a map μ:CP× CPCP. A complex orientation on an associative commutative ring spectrum E is an element x in E2(CP) whose restriction to E2(CP1) is 1, if the latter ring is identified with the coefficient ring of E. A spectrum E with such an element x is called a complex oriented ring spectrum.

If E is a complex oriented ring spectrum, then

E^*(\mathbf{CP}^\infty) = E^*(\text{point})[[x]]
E^*(\mathbf{CP}^\infty)\times E^*(\mathbf{CP}^\infty) = E^*(\text{point})[[x\otimes1, 1\otimes x]]

and μ*(x) ∈ E*(point)[[x⊗1, 1⊗x]] is a formal group law over the ring E*(point) = π*(E).

Complex cobordism has a natural complex orientation. Quillen (1969) showed that there is a natural isomorphism from its coefficient ring to Lazard's universal ring, making the formal group law of complex cobordism into the universal formal group law. In other words, for any formal group law F over any commutative ring R, there is a unique ring homomorphism from MU*(point) to R such that F is the pullback of the formal group law of complex cobordism.

Brown–Peterson cohomology

Complex cobordism over the rationals can be reduced to ordinary cohomology over the rationals, so the main interest is in the torsion of complex cobordism. It is often easier to study the torsion one prime at a time by localizing MU at a prime p; roughly speaking this means one kills off torsion prime to p. The localization MUp of MU at a prime p splits as a sum of suspensions of a simpler cohomology theory called Brown–Peterson cohomology, first described by Brown & Peterson (1966). In practice one often does calculations with Brown–Peterson cohomology rather than with complex cobordism. Knowledge of the Brown–Peterson cohomologies of a space for all primes p is roughly equivalent to knowledge of its complex cobordism.

Conner–Floyd classes

The ring MU*(BU) is isomorphic to the formal power series ring MU*(point)[[cf1, cf2, ...]] where the elements cf are called Conner–Floyd classes. They are the analogues of Chern classes for complex cobordism. They were introduced by Conner & Floyd (1966)

Similarly MU*(BU) is isomorphic to the polynomial ring MU*(point)[β1, β2, ...]

Cohomology operations

The Hopf algebra MU*(MU) is isomorphic to the polynomial algebra R[b1, b2, ...], where R is the reduced bordism ring of a 0-sphere.

The coproduct is given by

\psi(b_k) = \sum_{i+j=k}(b)_{2i}^{j+1}\otimes b_j

where the notation ()2i means take the piece of degree 2i. This can be interpreted as follows. The map

 x\rightarrow x+b_1x^2+b_2x^3+\cdots

is a continuous automorphism of the ring of formal power series in x, and the coproduct of MU*(MU) gives the composition of two such automorphisms.

See also

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Cobordism — A cobordism (W;M,N). In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds are cobordant if their disjoint… …   Wikipedia

  • List of cohomology theories — This is a list of some of the ordinary and generalized (or extraordinary) homology and cohomology theories in algebraic topology that are defined on the categories of CW complexes or spectra. For other sorts of homology theories see the links at… …   Wikipedia

  • Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Adams spectral sequence — In mathematics, the Adams spectral sequence is a spectral sequence introduced by Adams (1958). Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a… …   Wikipedia

  • Viktor Buchstaber — Viktor M. Buchstaber, (Russian:Виктор Матвеевич Бухштабер), Born: 1943, Tashkent, USSR) is a Russian mathematician known for his work on algebraic topology, homotopy and mathematical physics.WorkBuchstaber s first research work was in cobordism… …   Wikipedia

  • Michael J. Hopkins — Mike Hopkins in Oberwolfach 2009 Born April 18, 1958 …   Wikipedia

  • Daniel Quillen — Born June 22, 1940(1940 06 22) Orange, New Jersey Died April 30, 2011(2011 04 30) (aged 7 …   Wikipedia

  • Brown–Peterson cohomology — In mathematics, Brown–Peterson cohomology is a generalized cohomology theory introduced byharvtxt|Brown|Peterson|1966, depending on a choice of prime p . It is described in detail by harvtxt|Ravenel|2003|loc=Chapter 4.Its spectrum is usually… …   Wikipedia

  • Douglas Ravenel — Douglas C. Ravenel Born 1947 Nationality …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”