Focus (optics)

Focus (optics)
An image that is partially in focus, but mostly out of focus in varying degrees.

In geometrical optics, a focus, also called an image point, is the point where light rays originating from a point on the object converge.[1] Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. In the absence of significant aberrations, the smallest possible blur circle is the Airy disc, which is caused by diffraction from the optical system's aperture. Aberrations tend to get worse as the aperture diameter increases, while the Airy circle is smallest for large apertures.

An image, or image point or region, is in focus if light from object points is converged almost as much as possible in the image, and out of focus if light is not well converged. The border between these is sometimes defined using a circle of confusion criterion.

A principal focus or focal point is a special focus:

  • For a lens, or a spherical or parabolic mirror, it is a point onto which collimated light parallel to the axis is focused. Since light can pass through a lens in either direction, a lens has two focal points—one on each side. The distance in air from the lens or mirror's principal plane to the focus is called the focal length.
  • Elliptical mirrors have two focal points: light that passes through one of these before striking the mirror is reflected such that it passes through the other.
  • The focus of a hyperbolic mirror is either of two points which have the property that light from one is reflected as if it came from the other.
Focal blur is simulated in this computer generated image of glasses, which was rendered in POV-Ray.

A diverging (negative) lens, or a convex mirror, does not focus a collimated beam to a point. Instead, the focus is the point from which the light appears to be emanating, after it travels through the lens or reflects from the mirror. A convex parabolic mirror will reflect a beam of collimated light to make it appear as if it were radiating from the focal point, or conversely, reflect rays directed toward the focus as a collimated beam. A convex elliptical mirror will reflect light directed towards one focus as if it were radiating from the other focus, both of which are behind the mirror. A convex hyperbolic mirror will reflect rays emanating from the focal point in front of the mirror as if they were emanating from the focal point behind the mirror. Conversely, it can focus rays directed at the focal point that is behind the mirror towards the focal point that is in front of the mirror as in a Cassegrain telescope.

See also

References

  1. ^ "Standard Microscopy Terminology". University of Minnesota Characterization Facility website. Archived from the original on 2008-03-02. http://web.archive.org/web/20080302163401/http://www.charfac.umn.edu/glossary/f.html. Retrieved 2006-04-21. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Focus — may refer to:In science, mathematics or computing: *Focus (optics), a point toward which light rays are made to converge **Autofocus, a feature of some optical systems that obtains and maintains correct focus on a target **Focal length, a measure …   Wikipedia

  • Focus recovery based on the linear canonical transform — Focus recovery from defocused image is an ill posed problem since it loses the component of high freqency. Most of the methods for focus revocery are based on depth estimation theory [Most of depth recovery methods are simply based on camera… …   Wikipedia

  • Optics Letters —   Abbreviated title (ISO) Opt. Lett. Discipline Optics …   Wikipedia

  • Optics — For the book by Sir Isaac Newton, see Opticks. Optical redirects here. For the musical artist, see Optical (artist). Optics includes study of dispersion of light. Optics is the branch of …   Wikipedia

  • optics — /op tiks/, n. (used with a sing. v.) the branch of physical science that deals with the properties and phenomena of both visible and invisible light and with vision. [1605 15; < ML optica < Gk optiká, n. use of neut. pl. of OPTIKÓS; see OPTIC,… …   Universalium

  • Optics and vision — Contents 1 Visual perception 1.1 Human Visual system 1.2 Human eye 1.3 Visual acuity 2 …   Wikipedia

  • Focus stacking — Traduction à relire Focus stacking → Focus s …   Wikipédia en Français

  • focus — /ˈfoʊkəs / (say fohkuhs) noun (plural focuses or foci /ˈfoʊkaɪ/ (say fohkuy), /ˈfoʊki/ (say fohkee), /ˈfoʊsaɪ/ (say fohsuy)) 1. Physics a point at which rays of light, heat, or other radiation, meet after being refracted or reflected. 2. Optics …  

  • focus — focusable, adj. focuser, n. /foh keuhs/, n., pl. focuses, foci / suy, kuy/, v., focused, focusing or (esp. Brit.) focussed, focussing. n. 1. a central point, as of attraction, attention, or activity: The need to prevent a nuclear war became the… …   Universalium

  • focus — n. & v. n. (pl. focuses or foci) 1 Physics a the point at which rays or waves meet after reflection or refraction. b the point from which diverging rays or waves appear to proceed. Also called focal point. 2 a Optics the point at which an object… …   Useful english dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”