Carbon-13


Carbon-13

Infobox isotope

alternate_names =
symbol =C
mass_number =13
mass =
num_neutrons =7
num_protons =6
abundance =1.109%
halflife =
error_halflife =
background =#F99
text_color =


decay_product =
decay_symbol =
decay_mass =
decay_mode1 =
decay_energy1 =
decay_mode2 =
decay_energy2 =
decay_mode3 =
decay_energy3 =
decay_mode4 =
decay_energy4 =
parent =
parent_symbol =
parent_mass =
parent_decay =
parent2 =
parent2_symbol =
parent2_mass =
parent2_decay =
spin = +½
excess_energy =
error1 =
binding_energy =
error2 =

Carbon-13 (13C) is a natural, stable isotope of carbon and one of the environmental isotopes. It makes up about 1.1% of all natural carbon on Earth. [ [http://periodic.lanl.gov/elements/6.html Carbon ] ]

Detection by NMR spectroscopy

Because of its nuclear spin properties, this isotope responds to a resonant radio frequency (RF) signal. The absorption and emission of the RF signal by the nuclei can be monitored and detected using nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy. This is a technique that gives information on the identity and number of atoms adjacent to other atoms in said molecule, thereby giving clues to the structure of an organic molecule. Since 12C has zero spin, it does not give an NMR signal, and since only 1% of the atoms in a molecule are 13C, it is unlikely that carbon-carbon coupling is seen. Acquiring a 13C NMR spectrum can take from a couple of minutes to hours because many scans have to be summed together in order to have results distinguishable from background noise.

In biological NMR, proteins can be deliberately labelled with 13C (and usually nitrogen-15) to facilitate structure determination. This is achieved by growing microorganisms genetically engineered to express the protein on a growth medium with 13C labeled glucose as the only carbon source. In this way proteins with a 13C content of almost 100% can be produced.

Detection by mass spectrometry

A mass spectrum of an organic compound will usually contain a small peak of one mass unit greater than the apparent molecular ion peak (M). This is known as the M+1 peak and originates due to the presence of 13C atoms. A molecule containing one carbon atom will be expected to have an M+1 peak of approximately 1.1% of the size of the M peak as 1.1% of the carbon atoms will be 13C rather than 12C. Similarly a molecule containing two carbon atoms will be expected to have an M+1 peak of approximately 2.2% of the size of the M peak, as there is double the previous likelihood that a molecule will contain a 13C atom.

In the above the mathematics and chemistry have been simplified, however it can be used effectively to give the number of carbon atoms for small to medium sized organic molecules. In the following formula the result should be rounded to the nearest integer:

C = frac{100Y}{1.1X}

"C" = number of C atoms "X" = amplitude of the M ion peak "Y" = amplitude of the M+1 ion peak

13C-enriched compounds are used in the research of metabolic processes by means of mass spectrometry. Such compounds are safe because they are non-radioactive. In addition, 13C is used to quantitate proteins (quantitative proteomics). One important application is `stable isotope labeling with amino acids in cell culture´ (SILAC).

The ratio of 13C to 12C is slightly higher in plants employing C4 carbon fixation than in plants employing C3 carbon fixation. Because the different isotope ratios for the two kinds of plants propagate through the food chain, it is possible determine if the principal diet of a human or other animal consists primarily of C3 plants or C4 plants by measuring the isotopic signature of their collagen and other tissues.

ee also

* Carbon
* Isotopes of carbon
* Isotope fractionation

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Carbon — (), but as most compounds with multiple single bonded oxygens on a single carbon it is unstable.] Cyanide (CN–), has a similar structure, but behaves much like a halide ion (pseudohalogen). For example it can form the nitride cyanogen molecule… …   Wikipedia

  • Carbon — Car bon (k[aum]r b[o^]n), n. [F. carbone, fr. L. carbo coal; cf. Skr. [,c]r[=a] to cook.] (Chem.) 1. An elementary substance, not metallic in its nature, which is present in all organic compounds. Atomic weight 11.97. Symbol C. it is combustible …   The Collaborative International Dictionary of English

  • carbon — CARBÓN s.n. Element chimic, metaloid foarte răspândit în natură, component de bază al tuturor substanţelor organice, care se găseşte în cărbuni, în petrol, în gaze etc., iar în stare elementară în diamant, în grafit şi în cărbunele negru. ♢… …   Dicționar Român

  • Carbon — steht für: Kohlenstoff, chemisches Element Karbon, Erdzeitalter, die fünfte geochronologische Periode des Paläozoikums von vor etwa 359,2 Millionen Jahren bis vor etwa 299 Millionen Jahren Kohlenstofffaserverstärkter Kunststoff Carbon (Apple),… …   Deutsch Wikipedia

  • Carbon E7 — Carbon Motors Bild nicht vorhanden E7 Hersteller: Carbon Motors Corporation Produktionszeitraum: ab 2013 Klasse: Streifenwagen Karosserieversionen …   Deutsch Wikipedia

  • carbon — UK US /ˈkɑːbən/ noun ► [U] NATURAL RESOURCES a chemical element (= simple chemical substance), which exists in all plants and animals, and is an important part of coal and oil. When carbon is burned it produces carbon dioxide and carbon monoxide …   Financial and business terms

  • carbón — (Del lat. carbo, ōnis). 1. m. Materia sólida, ligera, negra y muy combustible, que resulta de la destilación o de la combustión incompleta de la leña o de otros cuerpos orgánicos. 2. carbón de piedra. 3. Brasa o ascua después de apagada. 4.… …   Diccionario de la lengua española

  • carbon — [kär′bən] n. [Fr carbone < L carbo (gen. carbonis), coal < IE base * ker , to burn > HEARTH] 1. a nonmetallic chemical element found in many inorganic compounds and all organic compounds: diamond and graphite are pure carbon; carbon is… …   English World dictionary

  • Carbon — Carbon, IN U.S. town in Indiana Population (2000): 334 Housing Units (2000): 136 Land area (2000): 0.158337 sq. miles (0.410090 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.158337 sq. miles (0.410090 sq.… …   StarDict's U.S. Gazetteer Places

  • carbon — non metallic element, 1789, coined 1787 in French by Lavoisier as charbone, from L. carbo (gen. carbonis) glowing coal, charcoal, from PIE root *ker heat, fire, to burn (Cf. L. cremare to burn; Skt. krsna black, burnt, kudayati singes; Lith.… …   Etymology dictionary

  • carbón — sustantivo masculino 1. Combustible sólido y negro que se obtiene por destilación o combustión incompleta de diferentes fuentes como huesos o leña y arde con facilidad. carbón animal. carbón vegetal o carbón de leña. 2. Combustible mineral fósil… …   Diccionario Salamanca de la Lengua Española


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.