Kolgomorov's inequality

Kolgomorov's inequality

Kolmogorov's inequality is an inequality which gives a relation among a function and its first and second derivatives. Kolmogorov's inequality states the following:

Let f colon mathbb{R} ightarrow mathbb{R} be a twice differentiable function on mathbb{R} such that f, and f" , are bounded on mathbb{R}. Denote

: M_0 = sup_{xinmathbb{R |f(x)|, M_1 = sup_{xinmathbb{R |f'(x)|, M_2 = sup_{xinmathbb{R |f"(x)|.

Then, f' ,! is bounded on mathbb{R} and M_1 le sqrt{2M_0M_2}.

Proof

The proof of this inequality uses Taylor's theorem.

Let a in mathbb{R}_+^*, x in mathbb{R}. Apply the Taylor-Lagrange Inequality to f ,! on the intervals [x-a,x] ,! and [x,x+a] ,! and obtain

:egin{cases}
f(x-a)-(f(x)-af'(x))| le frac{a^2}{2}M_2\
f(x+a)-(f(x)+af'(x))| le frac{a^2}{2}M_2.end{cases} from which

::|f(x+a)-f(x-a)-2af'(x)| ,!:egin{alignat}{2}&=|(f(x+a)-(f(x)+af'(x)))-(f(x-a)-(f(x)-af'(x)))|\&le a^2M_2,\end{alignat}

so that

:|2af'(x)| le |f(x+a)-f(x-a)|+a^2M_2 le 2M_0+a^2M_2.

Hence,

: M_1 le frac{M_0}{a}+frac{1}{2}aM_2 le sqrt{2M_0M_2},

where we have used the AM-GM inequality in the last step.

References

*cite book | author=Serge Francinou, Hervé Gianella, Serge Nicolas| title=Exercices de Mathématiques Oraux X-ENS| publisher=Cassini, Paris | year=2003 | id=ISBN 2-8425-032-X


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Inequality — In mathematics, an inequality is a statement about the relative size or order of two objects, or about whether they are the same or not (See also: equality) *The notation a < b means that a is less than b . *The notation a > b means that a is… …   Wikipedia

  • List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”