Egyptian Mathematical Leather Roll

Egyptian Mathematical Leather Roll

The Egyptian Mathematical Leather Roll (also referred to as EMLR) was a 10" x 17" leather roll purchased by Alexander Henry Rhind in 1858. It was sent to the British Museum in 1864, along with the Rhind Mathematical Papyrus but the former was not chemically softened and unrolled until 1927 (Scott, Hall 1927).

The writing consists of Middle Kingdom hieratic characters written right to left. There are 26 rational numbers listed. Each rational number is followed by its equivalent Egyptian fraction series. There were ten Eye of Horus numbers: 1/2, 1/4 (twice), 1/8 (thrice), 1/16 (twice), 1/32, 1/64 converted to Egyptian fractions. There were seven other even rational numbers converted to Egyptian fractions: 1/6 (twice–but wrong once), 1/10, 1/12, 1/14, 1/20 and 1/30. Finally, there were nine odd rational numbers converted to Egyptian fractions: 2/3, 1/3 (twice), 1/5, 1/7, 1/9, 1/11, 1/13 and 1/15, training patterns for scribal students to learn the RMP 2/n table method.

The British Museum examiners found no introduction or description to how or why the equivalent unit fraction series were computed (Gillings 1981: 456-457). Equivalent unit fraction series are associated with fractions 1/3, 1/4, 1/8 and 1/16. There was a trivial error associated with the final 1/15 unit fraction series. The 1/15 series was listed as equal to 1/6. Another serious error was associated with 1/13, an issue that the 1927 examiners did not attempt to resolve.

The British Museum Quarterly (1927) naively reported the chemical analysis to be more interesting than the document's additive contents. One minimalist reported that the Horus-Eye binary fraction system was superior to the Egyptian fraction notation.

The Middle Kingdom Egyptian fraction conversions of binary fractions corrected a Eye of Horus numeration error. The older Horus-Eye arithmetic had employed an infinite series numeration system that rounded-off to 6-term binary fraction series, throwing away 1/64 units. Horus-Eye fractions are related to modern decimals, with both numeration systems rounding off, (Ore 1944: 331-325). Note that the Horus-Eye definition of one (1): 1 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + … dropped off the last term 1/64th, (Gillings 1972: 210). Modern decimals' round-off rules are closely related.

Within the EMLR red auxiliary numbers (multiples) converted 26 1/p and 1/pq unit fractions to non-optimal Egyptian fraction series. In total 22 unique unit fractions were converted by eight multiples (2, 3, 4, 5, 6, 7, 10, and 25). A detailed analysis of the 26 conversions are linked below. Egyptian fractions represented a solution to the Eye of Horus round-off problem by always converting rational numbers to exact unit fraction series, frequently using multiples as the first of three-steps. The RMP 2/n table converted 51 rational numbers by 14 multiples.

Summary: Middle Kingdom Egyptian arithmetic methods were written in non-optimal and optimal unit fraction series. Early researchers minimized the EMLR’s significance. The EMLR, the Rhind Mathematical Papyrus and the RMP 2/n table demonstrate that one method converted all rational numbers to exact unit fraction series during the Middle Kingdom. That is, the EMLR and RMP 2/n table should be seen as one document. The EMLR used 8 multiples to convert 22 rational numbers, introducing students to 14 multiples used to convert 51 rational numbers in the RMP 2/n table.


The following chronology shows several milestones that marked the recent progress toward reporting a clearer understanding of the EMLR's contents.

1895 – Hultsch suggested that all RMP 2/p series were coded by an algebraic identity, using a parameter A (Hultsch 1895).

1927 – Glanville prematurely concluded that EMLR arithmetic was purely additive (Glanville 1927).

1929 – Vogel reported the EMLR to be more important, though it contains only 25 unit fraction series (Vogel 1929)

1950 – Bruins independently confirmed Hultsch’s RMP 2/p analysis (Bruins 1950)

1972 – Gillings found solutions to an easier problem, the 2/pq series of the RMP (Gillings 1972: 95-96).

1982 – Knorr identified the RMP fractions 2/35, 2/91 and 2/95 as exceptions to the 2/pq problem (Knorr 1982).



Boyer, Carl B. A History of Mathematics. New York: John Wiley, 1968.

Brown, Kevin S. The Akhmin Papyrus 1995 --- Egyptian Unit Fractions 1995

Bruckheimer, Maxim and Y. Salomon. “Some Comments on R. J. Gillings’ Analysis of the 2/n Table in the Rhind Papyrus.” Historia Mathematica 4 Berlin (1977): 445–452.

Bruins, Evert M. Fontes matheseos: hoofdpunten van het prae-Griekse en Griekse wiskundig denken. Leiden, E. J. Brill,1953.

--- “Platon et la table égyptienne 2/n”. Janus 46, Amsterdam, (1957): 253–263.

--- “Egyptian Arithmetic.” Janus 68, Amsterdam, (1981): 33–52.

--- “Reducible and Trivial Decompositions Concerning Egyptian Arithmetics”. Janus 68, Amsterdam, (1981): 281–297.

Burton, David M. History of Mathematics: An Introduction, Boston Wm. C. Brown, 2003.

Chace, Arnold Buffum, et al The Rhind Mathematical Papyrus, Oberlin, Mathematical Association of America, 1927.

Collier, Mark and Steven Quirke (eds): Lahun Papyri: Religious, Literary, Legal, Mathematical and Medical Oxford, Archaeopress, 2004.

Cooke, Roger. The History of Mathematics. A Brief Course, New York, John Wiley & Sons, 1997.

Couchoud, Sylvia. “Mathématiques égyptiennes”. Recherches sur les connaissances mathématiques de l’Egypte pharaonique., Paris, Le Léopard d’Or, 1993.

Daressy, Georges. “Akhmim Wood Tablets”, Le Caire Imprimerie de l’Institut Francais d’Archeologie Orientale, 1901, 95–96.

Eves, Howard, An Introduction to the History of Mathematics, New York, Holt, Rinehard & Winston, 1961

Fowler, David H. The mathematics of Plato's Academy: a new reconstruction. New York, Clarendon Press, 1999.

Gardiner, Alan H. “Egyptian Grammar being an Introduction to the Study of Hieroglyphs, Oxford, Oxford University Press, 1957.

Gardner, Milo. “The Egyptian Mathematical Leather Roll, Attested Short Term and Long Term” History of the Mathematical Sciences”, Ivor Grattan-Guinness, B.C. Yadav (eds), New Delhi, Hindustan Book Agency, 2002:119-134.

--- " Mathematical Roll of Egypt", Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Springer, Nov. 2005.

Gillings, Richard J. “The Egyptian Mathematical Leather Roll”. Australian Journal of Science 24 (1962): 339-344, Mathematics in the Time of the Pharaohs. Cambridge, Mass.: MIT Press, 1972. New York: Dover, reprint 1982.

--- “The Recto of the Rhind Mathematical Papyrus: How Did the Ancient Egyptian Scribe Prepare It ?” Archive for History of Exact Sciences 12 (1974), 291–298.

--- “The Recto of the RMP and the EMLR”, Historia Mathematica, Toronto 6 (1979), 442-447.

--- “The Egyptian Mathematical Leather Role–Line 8. How Did the Scribe Do it?”,(Historia Mathematica1981), 456–457.

Glanville, S.R.K. "The Mathematical Leather Roll in the British Museum” Journal of Egyptian Archaeology 13, London (1927): 232–8

Griffith, Francis Llewelyn. The Petrie Papyri. Hieratic Papyri from Kahun and Gurob (Principally of the Middle Kingdom), Vol. 1, 2, Bernard Quaritch, London, 1898.

Gunn, Battiscombe George. Review of ”The Rhind Mathematical Papyrus” by T. E. Peet. The Journal of Egyptian Archaeology 12 London, (1926): 123–137.

Hultsch, F, Die Elemente der Aegyptischen Theihungsrechmun 8, Ubersich uber die Lehre von den Zerlegangen, (1895):167-71.

Imhausen, Annette. “Egyptian Mathematical Texts and their Contexts”, Science in Context, vol 16, Cambridge (UK), (2003): 367-389.

Joseph, George Gheverghese. The Crest of the Peacock/the non-European Roots of Mathematics, Princeton, Princeton University Press, 2000

Klee, Victor, and Wagon, Stan. Old and New Unsolved Problems in Plane Geometry and Number Theory, Mathematical Association of America, 1991.

Knorr, Wilbur R. “Techniques of Fractions in Ancient Egypt and Greece”. Historia Mathematica 9 Berlin, (1982): 133–171.

Legon, John A.R. “A Kahun Mathematical Fragment”. Discussions in Egyptology, 24 Oxford, (1992).

Lüneburg, H. “Zerlgung von Bruchen in Stammbruche” Leonardi Pisani Liber Abbaci oder Lesevergnügen eines Mathematikers, Wissenschaftsverlag, Mannheim, 1993. 81–85.

Neugebauer, Otto. The Exact Sciences in Antiquity. Brown U, 1957

Ore, Oystein. Number Theory and its History, New York, McGraw-Hill, 1948

Rees, C. S. “Egyptian Fractions”, Mathematical Chronicle 10 , Auckland, (1981): 13–33.

Robins, Gay. and Charles Shute, The Rhind Mathematical Papyrus: an Ancient Egyptian Text" London, British Museum Press, 1987.

Roero, C. S. “Egyptian mathematics” Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences” I. Grattan-Guiness (ed), London, (1994): 30–45.

Sarton, George. Introduction to the History of Science, Vol I, New York, Williams & Son, 1927

Scott, A. and Hall, H.R., “Laboratory Notes: Egyptian Mathematical Leather Roll of the Seventeenth Century BC”, British Museum Quarterly, Vol 2, London, (1927): 56.

Sylvester, J. J. “On a Point in the Theory of Vulgar Fractions”: American Journal Of Mathematics, 3 Baltimore (1880): 332–335, 388–389.

Vogel, Kurt. “Erweitert die Lederolle unserer Kenntniss ägyptischer Mathematik Archiv fur Geschichte der Mathematik, V 2, Julius Schuster, Berlin (1929): 386-407

van der Waerden, Bartel Leendert. Science Awakening, New York, 1963


* Egyptian Mathematical Leather Roll
* Planetmath
* Planetmath
* Wikipedia RMP 2/n Table
* Breaking the RMP 2/n Table Code
* History of Egyptian fractions

Wikimedia Foundation. 2010.

См. также в других словарях:

  • Egyptian mathematics — refers to the style and methods of mathematics performed in Ancient Egypt.IntroductionEgyptian multiplication and division employed the method of doubling and halving (respectively) a known number to approach the solution. The method of false… …   Wikipedia

  • Egyptian fraction — An Egyptian fraction is the sum of distinct unit fractions, such as frac{1}{2}+ frac{1}{3}+ frac{1}{16}. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators… …   Wikipedia

  • Rhind Mathematical Papyrus 2/n table — The Rhind Mathematical Papyrus contains, among other mathematical contents, a table of Egyptian fractions created from 2/ n . The text reports 51 rational numbers converted to short and concise unit fraction series. The document was written in… …   Wikipedia

  • Moscow Mathematical Papyrus — Pushkin State Museum of Fine Arts in Moscow 14th problem of the Moscow Mathematical Papyrus (V. Struve, 1930) Date …   Wikipedia

  • Rhind Mathematical Papyrus — British Museum, London A portion of the Rhind Papyrus Date …   Wikipedia

  • Eye of Horus — The Eye of Horus (Wedjat) [Chapter 14, Egyptian Art in David P. Silverman, Ancient Egypt , Duncan Baird Publishers, 1997. p.228] (previously Wadjet and the Eye of the Moon; and afterwards as The Eye of Ra) [ Wörterbuch der ägyptischen Sprache 1,… …   Wikipedia

  • Ahmes — (c. 1680 BC c. 1620 BC) (more accurately Ahmose) was an Egyptian scribe who lived during the Second Intermediate Period. A surviving work of Ahmes is part of the Rhind Mathematical Papyrus now located in the British Museum (Newman, 1956). Ahmes… …   Wikipedia

  • Papyrus Rhind — Fragment des Papyrus Rhind, pBM 10057 …   Deutsch Wikipedia

  • Ahmes (scribe) — Ahmès (scribe) Pour les articles homonymes, voir Ahmès. Ahmès était un prêtre égyptien qui vécut vers 1700. Une de ses œuvres qui lui a survécu fait partie du Papyrus Rhind maintenant conservé au British Museum (Newman, 1956). L œuvre est… …   Wikipédia en Français

  • Ahmès (scribe) — Pour les articles homonymes, voir Ahmès. Ahmès est un prêtre égyptien qui vécut vers 1700. Une de ses œuvres qui lui a survécu fait partie du papyrus Rhind maintenant conservé au British Museum (Newman, 1956). L œuvre est intitulée… …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»