Chain reaction

Chain reaction

A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events.

Chain reactions are one way in which systems which are in thermodynamic non-equilibrium can release energy or increase entropy in order to reach a state of higher entropy. For example, a system may not be able to reach a lower energy state by releasing energy into the environment, because it is hindered in some way from taking the path that will result in the energy release. If a reaction results in a small energy release making way for more energy releases in an expanding chain, then the system will typically collapse explosively until much or all of the stored energy has been released.

A macrosopic metaphor for chain reactions is thus a snowball causing larger snowfall until finally an avalanche results ("snowball effect"). This is a result of stored gravitaional potential energy seeking a path of release over friction. Chemically, the equivalent to a snow avalanche is a spark causing a forest fire. In nuclear physics, a single stray neutron can result in an prompt critical event, which may be finally be energetic enough for a nuclear reactor meltdown or (in a bomb) a nuclear explosion. However, this reaction cannot be reversed.

Contents

Chemical chain reactions

In 1913 the German chemist Max Bodenstein first put forth the idea of chemical chain reactions. If two molecules react, not only molecules of the final reaction products are formed, but also some unstable molecules, having the property of being able to further react with the parent molecules with a far larger probability than the initial reactants. In the new reaction, further unstable molecules are formed besides the stable products, and so on.

In 1923, Danish and Dutch scientists Christian Christiansen and Hendrik Anthony Kramers, in an analysis of formation of polymers, pointed out that such a chain reaction need not start with a molecule excited by light, but could also start with two molecules colliding violently in the traditional way classically previously proposed for initiation of chemical reactions, by van' t Hoff.

Christiansen and Kramers also noted that if, in one link of the reaction chain, two or more unstable molecules are produced, the reaction chain would branch and grow. The result is in fact an exponential growth, thus giving rise to explosive increases in reaction rates, and indeed to chemical explosions themselves. This was the first proposal for the mechanism of chemical explosions.

A quantitative chain chemical reaction theory was created by Soviet physicist Nikolay Semyonov in 1934.[1] Semyanov shared the Nobel Prize in 1956 with Sir Cyril Norman Hinshelwood, who independently developed many of the same quantitative concepts.[2]

The main steps of chain reaction are the following.

  • Initiation (at this step an active particle, often a free radical, is produced);
  • propagation (may comprise several elementary steps, as, for instance, reaction elementary acts, where the active particle through reaction forms another active particle which continues the reaction chain by entering the next elementary step); particular cases are:
* chain branching (the case of propagation step when more new active particles form in the step than enter it);
* chain transfer (the case in which one active particle enters an elementary reaction with the inactive particle which as a result becomes another active particle along with forming of another inactive particle from the initial active one);
  • termination (elementary step in which active particle loses its activity without transferring the chain; e. g. recombination of the free radicals).

Nuclear chain reactions

A nuclear chain reaction was proposed by Leó Szilárd in 1933, shortly after the neutron was discovered, but more than five years before nuclear fission was discovered. Szilárd knew of chemical chain reactions, and he had been reading about an energy-producing nuclear reaction involving high-energy protons bombarding lithium, demonstrated by John Cockcroft and Ernest Walton, in 1932. Now, Szilárd proposed to use neutrons theoretically-produced from certain nuclear reactions in lighter isotopes, to induce further reactions in light isotopes that produced more neutrons. This would in theory produce a chain reaction at the level of the nucleus. He did not envision nuclear fission as one of these neutron-producing reactions, since this reaction was not known at the time. Experiments he proposed using beryllium and indium failed.

Later, after nuclear fission was discovered in 1938, Szilárd immediately realized the possibility of using neutron-induced fission as the particular nuclear reaction needed for a chain-reaction, so long as fission also produced neutrons. In 1939, with Enrico Fermi, Szilárd proved this neutron-multiplying reaction in uranium. In this reaction, a neutron plus a fissionable atom causes a fission resulting in a larger number of neutrons than the single one that was consumed in the initial reaction. Thus was born the practical nuclear chain reaction by the mechanism of neutron-induced nuclear fission.

Specifically, if one or more of the produced neutrons themselves interact with other fissionable nuclei, and these also undergo fission, then there is a possibility that the macroscopic overall fission reaction will not stop, but continue throughout the reaction material. This is then a self-propagating and thus self-sustaining chain reaction. This is the principle for nuclear reactors and atomic bombs.

[The above description is somewhat simplified. The crucial issue is whether enough of those secondary neutrons themselves produce a further fission. The nuclear chain reaction is described in significantly more detail in the article on Stan Ulam, who "discovered" or realized the details of the amplification concept, when fission by prompt fission neutrons were the mechanism].

Demonstration of a self-sustaining nuclear chain reaction was accomplished by Enrico Fermi and others, in the successful operation of Chicago Pile-1, the first artificial nuclear reactor, in late 1942.

Electron avalanche in gases

An electron avalanche happens between two unconnected electrodes in a gas when an electric field exceeds a certain theshold. Random thermal collisions of gas atoms may result in a a few free electrons and positively-charged gas ions, in a process called impact ionizaton. Acceleration of these free electrons in a strong electric field causes them to gain energy, and when they impact other atoms, the energy causes release of new free electrons and ions (ionization), which fuels the same process. If this process happens faster than it is naturally quenched by ions recombining, the new ions multiply in successive cycles until the gas breaks down into a plasma and current flows freely in a discharge.

Electron avalanches are essential to the dielectric breakdown process within gases. The process can culminate in corona discharges, streamers, leaders, or in a spark or continuous electric arc that completely bridges the gap. The process may extends to huge sparks — streamers in lightning discharges propagate by formation of electron avalanches created in the high potential gradient ahead of the streamers' advancing tips. Once begun, avalanches are often intensified by the creation of photoelectrons as a result of ultraviolet radiation emitted by the excited medium's atoms in the aft-tip region.

The process can also be used to detect radiation that initiates the process, as the passage of a single particles can amplified to large discharges. This is the mechanism of a Geiger counter and also the visualization possible with a spark chamber and other wire chambers.

Avalanche breakdown in semiconductors

An avalanche breakdown process can happen in semiconductors, which in some ways conduct electricity analogously to a mildy-ionized gas. Semiconductors rely on free electrons knocked out of the crystal by thermal vibration for conduction. Thus, unlike metals, semiconductors become better conductors the higher the temperature. This sets up conditions for the same type of positive feedback-- heat from current flow causes temperature to rise, which inceases charge carriers, lowering resistance, and causing more current to flow. This can continue to the point of complete breakdown of normal resistance at a semiconductor junction, and failure of the device (this may be temporary or permanent depending on whether there is physical damage to the crystal). Certain devices, such as avalanche diodes, deliberately make use of the effect.

Chain Reactions in Economics

In 1963 Friedman and Schwartz [3] proposed a positive feedback loop as a mechanism for catastrophic failures in economics: “It happens that a liquidity crisis in a unit fractional reserve banking system is precisely the kind of event that trigger- and often has triggered- a chain reaction. And economic collapse often has the character of a cumulative process. Let it go beyond a certain point, and it will tend for a time to gain strength from its own development as its effects spread and return to intensify the process of collapse”.

Further examples

References

  1. ^ http://www.marka-art.ru/catalogs/StampSeries.jsp?&id=29264&lang=en
  2. ^ http://nobelprize.org/nobel_prizes/chemistry/laureates/1956/press.html History of the chemical chain reaction from 1913 to the Nobel work recognized in 1956
  3. ^ Friedman and Schwartz 1963: P.419: The Banking Crisis in USA:

See also

IUPAC Gold Book - Chain reaction


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Chain Reaction — Título Reacción en cadena Ficha técnica Dirección Andrew Davis Producción Andrew Davis Arne Schmidt …   Wikipedia Español

  • Chain Reaction — (engl.: Kettenreaktion) bezeichnet unter anderem: Außer Kontrolle, Film aus dem Jahr 1996 Chain Reaction (Film), Film aus dem Jahr 2006 Chain Reaction (Label), von Moritz von Oswald und Mark Ernestus betriebenes deutsches Techno Plattenlabel… …   Deutsch Wikipedia

  • chain reaction — chain reactions 1) N COUNT A chain reaction is a series of chemical changes, each of which causes the next. 2) N COUNT A chain reaction is a series of events, each of which causes the next. Whenever recession strikes, a chain reaction is set into …   English dictionary

  • chain reaction — chain re action n 1.) technical a chemical or ↑nuclear reaction which produces energy and causes more reactions of the same kind 2.) a series of related events, each of which causes the next ▪ A sudden drop on Wall Street can set off a chain… …   Dictionary of contemporary English

  • chain reaction — ► NOUN 1) a chemical reaction in which the products themselves spread the reaction. 2) a series of events, each caused by the previous one …   English terms dictionary

  • chain reaction — n a self sustaining chemical or nuclear reaction yielding energy or products that cause further reactions of the same kind …   Medical dictionary

  • chain reaction — n. 1. a self sustaining series of chemical or nuclear reactions in which the products of the reaction contribute directly to the process: it can be started by light, an electric spark, bombardment with neutrons, etc. 2. any sequence of events,… …   English World dictionary

  • chain reaction — chain reaction. См. цепная реакция. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • Chain Reaction — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Chain reaction est le terme anglais pour désigner une réaction en chaîne. Cinéma et télévision Chain Reaction (Tsepnaya reaktsiya) est un film russe… …   Wikipédia en Français

  • chain reaction — 1. Physics. a self sustaining reaction in which the fission of nuclei of one generation of nuclei produces particles that cause the fission of at least an equal number of nuclei of the succeeding generation. 2. Chem. a reaction that results in a… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”