Gas cluster ion beam

Gas cluster ion beam

Gas Cluster Ion Beams (GCIB) is a new technology for nano-scale modification of surfaces. It can smooth a wide variety of surface material types to within an angstrom of roughness without subsurface damage. It is also used to chemically alter surfaces through infusion or deposition.


Using GCIB a surface is bombarded by a beam of high energy nanoscale cluster ions. The clusters are formed when a high pressure gas (approximately 10 atmospheres pressure) expands into a vacuum (1e-5 atmospheres). The gas expands adiabatically and cools then condenses into clusters. The clusters are nano sized bits of crystalline matter with unique properties intermediate between the realms of atomic physics and those of solid state physics. The expansion takes place inside of a nozzle that shapes the gas flow and facilitates the formation of a jet of clusters. The jet of clusters passes through differential pumping apertures into a region of high vacuum (1e-8 atmospheres) where the clusters are ionized by collisions with energetic electrons. The ionized clusters are accelerated electrostatically to very high velocities, and are focused into a tight beam.

The GCIB beam is then used to treat a surface -- typically the treated substrate is mechanically scanned in the beam to allow uniform irradiation of the surface. Argon is a commonly used gas in GCIB treatments because it is chemically inert and inexpensive. Argon forms clusters readily, the atoms in the cluster are bound together with Van der Waals forces. Typical parameters for a high energy Argon GCIB are: average cluster size 10,000 atoms, average cluster charge +3, average cluster energy 65 keV, average cluster velocity 6.5 km/s, with a total electrical current of 200 µA or more. When an Argon cluster with these parameters strikes a surface, a shallow crater is formed with a diameter of approximately 20 nm and a depth of 10 nm. When imaged using Atomic Force Microscopy (AFM) the craters have an appearance much like craters on planetary bodies. A typical GCIB surface treatment allows every point on the surface to be struck by many cluster ions, resulting in smoothing of surface irregularities.

Lower energy GCIB treatments can be used to further smooth the surface, and GCIB can be used to produce an atomic level smoothness on both planar and nonplanar surfaces. Almost any gas can be used for GCIB, and there are many more uses for chemically reactive clusters such as for doping semiconductors (using B2H6 gas), cleaning and etching (using NF3 gas), and for depositing chemical layers.

Industrial applications

In industry, GCIB has been used for the manufacture of semiconductor devices, optical thin films, trimming SAW and FBAR filter devices [] , fixed disk memory systems and for other uses. GCIB smoothing of high voltage electrodes has been shown to reduce the field emission of electrons, and GCIB treated RF cavities are being studied for use in future high energy particle accelerators.


* I. Yamada, J. Matsuo, N. Toyoda, A. Kirkpatrick, "Materials Processing by Gas Cluster Ion Beams", Materials Science and Engineering Reports R34(6) 30 Oct 2001 ISSN 0927-796X

*"Surface & coatings technology" (Surf. coat. technol.) ISSN 0257-8972

External links

* [ Workshop on Advanced Cluster Ion Beam and Advanced Quantum Beam Technology]
* [ GCIB Infusion for the manufacture of semiconductor devices]

Wikimedia Foundation. 2010.

См. также в других словарях:

  • Ion implantation — is a materials engineering process by which ions of a material can be implanted into another solid, thereby changing the physical properties of the solid. Ion implantation is used in semiconductor device fabrication and in metal finishing, as… …   Wikipedia

  • cluster — clusteringly, adv. clustery, adj. /klus teuhr/, n. 1. a number of things of the same kind, growing or held together; a bunch: a cluster of grapes. 2. a group of things or persons close together: There was a cluster of tourists at the gate. 3. U.S …   Universalium

  • Static secondary ion mass spectrometry — Static secondary ion mass spectrometry, or static SIMS is a technique for chemical analysis including elemental composition and chemical structure of the uppermost atomic or molecular layer of a solid which may be a metal, semiconductor or… …   Wikipedia

  • Secondary ion mass spectrometry — Infobox chemical analysis name = Secondary ion mass spectrometry caption =CAMECA IMS3f Magnetic SIMS Instrument acronym = SIMS classification =Mass spectrometry analytes = Solid surfaces, thin films related = Fast atom bombardment… …   Wikipedia

  • Surface finishing — is a broad range of industrial processes that alter the surface of a manufactured item to achieve a certain property.[1] Finishing processes may be employed to: improve appearance, adhesion or wettability, solderability, corrosion resistance,… …   Wikipedia

  • Caesium — xenon ← caesium → barium Rb ↑ Cs ↓ Fr …   Wikipedia

  • machine tool — machine tooled, adj. a power operated machine, as a lathe, used for general cutting and shaping of metal and other substances. [1860 65] * * * Stationary, power driven machine used to cut, shape, or form materials such as metal and wood. Machine… …   Universalium

  • Tungsten — (pronEng|ˈtʌŋstən), also known as wolfram (IPA|/ˈwʊlfrəm/), is a chemical element that has the symbol W and atomic number 74.A steel gray metal, tungsten is found in several ores, including wolframite and scheelite. It is remarkable for its… …   Wikipedia

  • PVD-Verfahren — Der Begriff physikalische Gasphasenabscheidung (englisch physical vapour deposition, kurz PVD) bezeichnet eine Gruppe von vakuumbasierten Beschichtungsverfahren bzw. Dünnschichttechnologien, bei denen im Gegensatz zu CVD Verfahren die Schicht… …   Deutsch Wikipedia

  • Physical vapor deposition — Der Begriff physikalische Gasphasenabscheidung (englisch physical vapour deposition, kurz PVD) bezeichnet eine Gruppe von vakuumbasierten Beschichtungsverfahren bzw. Dünnschichttechnologien, bei denen im Gegensatz zu CVD Verfahren die Schicht… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»