# Green's function (many-body theory)

﻿
Green's function (many-body theory)

In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely related. (Specifically, only two-point 'Green's functions' are Green's functions in the mathematical sense; the linear operator that they invert is the part of the Hamiltonian operator that is quadratic in the fields.)

patially uniform case

Basic definitions

Throughout, $zeta$ is $+1$ for bosons and $-1$ for fermions and $\left[ldots,ldots\right]$ denotes either a commutator or anticommutator as appropriate.

The signs of the Green functions have been chosen so that the thermal Green function for a free particle is:$mathcal\left\{G\right\}\left(mathbf\left\{k\right\},omega_n\right) = frac\left\{1\right\}\left\{-mathrm\left\{i\right\}omega_n + xi_mathbf\left\{k,$and the retarded Green function is:$G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right) = frac\left\{1\right\}\left\{-\left(omega+mathrm\left\{i\right\}eta\right) + xi_mathbf\left\{k.$In this section, functions will have their arguments abbreviated as single numbers: $mathbf\left\{x\right\}_n t_n$ and $mathbf\left\{x\right\}_n au_n$ will be replaced by $n$.

The imaginary-time Heisenberg operators can be written in terms of Schrödinger operators as:$psi\left(mathbf\left\{x\right\}, au\right) = mathrm\left\{e\right\}^\left\{K au\right\} psi\left(mathbf\left\{x\right\}\right) mathrm\left\{e\right\}^\left\{-K au\right\}$:where $K = H - mu N$ is the grand-canonical Hamiltonian. Similarly, for the real-time operators,:$psi\left(mathbf\left\{x\right\},t\right) = mathrm\left\{e\right\}^\left\{mathrm\left\{i\right\} K t\right\} psi\left(mathbf\left\{x\right\}\right) mathrm\left\{e\right\}^\left\{-mathrm\left\{i\right\} K t\right\},$and .

In imaginary time, the general Green function is defined by:where $n$ signifies $mathbf\left\{x\right\}_n, au_n$. (The imaginary-time variables $au_n$ are restricted to the range $0$ to .)

In real time, the definition is:where $n$ signifies $mathbf\left\{x\right\}_n, t_n$.

Two-point functions

The Green function with a single pair of arguments ($n=1$) is referred to as the two-point function, or propagator. In the presence of both spatial and temporal translational symmetry, it depends only on the difference of its arguments. Taking the Fourier transform with respect to both space and time gives:where the sum is over the appropriate Matsubara frequencies (and the integral involves an implicit factor of $\left(2pi\right)^\left\{-d\right\}$, as usual).

In real time, we will explicitly indicate the time-ordered function with a superscript T::$G^\left\{mathrm\left\{T\left(mathbf\left\{x\right\} t|mathbf\left\{x\right\}\text{'} t\text{'}\right) = int_mathbf\left\{k\right\} int frac\left\{mathrm\left\{d\right\}omega\right\}\left\{2pi\right\} G\left(mathbf\left\{k\right\},omega\right) mathrm\left\{e\right\}^\left\{mathrm\left\{i\right\} mathbf\left\{k\right\}cdot\left(mathbf\left\{x\right\} -mathbf\left\{x\right\} \text{'}\right)-mathrm\left\{i\right\}omega\left(t-t\text{'}\right)\right\}.$

The real-time two-point Green function can be written in terms of `retarded' and `advanced' Green functions, which will turn out to have simpler analyticity properties. The retarded and advanced Green functions are defined by:and:respectively.

They are related to the time-ordered Green function by:$G^\left\{mathrm\left\{T\left(mathbf\left\{k\right\},omega\right) = \left[1+zeta n\left(omega\right)\right] G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right) - zeta n\left(omega\right) G^\left\{mathrm\left\{A\left(mathbf\left\{k\right\},omega\right),$where:is the Bose-Einstein or Fermi-Dirac distribution function.

Imaginary-time ordering and -periodicity

The thermal Green functions are defined only when both imaginary-time arguments are within the range $0$ to . The two-point Green function has the following properties. (The position or momentum arguments are suppressed in this section.)

Firstly, it depends only on the difference of the imaginary times::$mathcal\left\{G\right\}\left( au, au\text{'}\right) = mathcal\left\{G\right\}\left( au - au\text{'}\right).$The argument $au - au\text{'}$ is allowed to run from to .

Secondly, $mathcal\left\{G\right\}\left( au\right)$ is periodic under shifts of . Because of the small domain within which the function is defined, this means just:for . (Note that the function is antiperiodic for fermions.) Time ordering is crucial for this property, which can be proved straightforwardly, using the cyclicity of the trace operation.

These two properties allow for the Fourier transform representation and its inverse,:

Finally, note that $mathcal\left\{G\right\}\left( au\right)$ has a discontinuity at $au = 0$; this is consistent with a long-distance behaviour of $mathcal\left\{G\right\}\left(omega_n\right) sim 1/|omega_n|$.

pectral representation

The propagators in real and imaginary time can both be related to the spectral density (or spectral weight), given by:$ho\left(mathbf\left\{k\right\},omega\right) = frac\left\{1\right\}\left\{mathcal\left\{Zsum_\left\{alpha,alpha\text{'}\right\} 2pi delta\left(E_alpha-E_\left\{alpha\text{'}\right\}-omega\right);$
langlealpha|psi_mathbf{k}^dagger|alpha' angle|^2left(mathrm{e}^{-eta E_{alpha'-zetamathrm{e}^{-eta E_{alpha ight),where $|alpha angle$ refers to a (many-body) eigenstate of the grand-canonical Hamiltonian $H-mu N$, with eigenvalue $E_alpha$.

The imaginary-time propagator is then given by:$mathcal\left\{G\right\}\left(mathbf\left\{k\right\},omega_n\right) = int_\left\{-infty\right\}^\left\{infty\right\} frac\left\{mathrm\left\{d\right\}omega\text{'}\right\}\left\{2pi\right\}frac\left\{ ho\left(mathbf\left\{k\right\},omega\text{'}\right)\right\}\left\{-mathrm\left\{i\right\}omega_n+omega\text{'}\right\}.$and the retarded propagator by:$G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right) = int_\left\{-infty\right\}^\left\{infty\right\} frac\left\{mathrm\left\{d\right\}omega\text{'}\right\}\left\{2pi\right\}frac\left\{ ho\left(mathbf\left\{k\right\},omega\text{'}\right)\right\}\left\{-\left(omega+mathrm\left\{i\right\}eta\right)+omega\text{'}\right\},$where the limit as $eta ightarrow 0^+$ is implied.

The advanced propagator is given by the same expression, but with $-mathrm\left\{i\right\}eta$ in the denominator. The time-ordered function can be found in terms of $G^\left\{mathrm\left\{R$ and $G^\left\{mathrm\left\{A$. As claimed above, $G^\left\{mathrm\left\{R\left(omega\right)$ and $G^\left\{mathrm\left\{A\left(omega\right)$ have simple analyticity properties: the former (latter) has all its poles and discontinuities in the lower (upper) half-plane. The thermal propagator $mathcal\left\{G\right\}\left(omega_n\right)$ has all its poles and discontinuities on the imaginary $omega_n$ axis.

The spectral density can be found very straightforwardly from $G^\left\{mathrm\left\{R$, using the Sokhatsky-Weierstrass theorem:$lim_\left\{eta ightarrow 0^+\right\}frac\left\{1\right\}\left\{x+mathrm\left\{i\right\}eta\right\} = \left\{P\right\}frac\left\{1\right\}\left\{x\right\}-ipidelta\left(x\right),$where $P$ denotes the Cauchy principal part.This gives:$ho\left(mathbf\left\{k\right\},omega\right) = 2mathrm\left\{Im\right\}, G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right).$

This furthermore implies that $G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right)$ obeys the following relationship between its real and imaginary parts::$mathrm\left\{Re\right\}, G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right) = -2 P int_\left\{-infty\right\}^\left\{infty\right\} frac\left\{mathrm\left\{d\right\}omega\text{'}\right\}\left\{2pi\right\}frac\left\{mathrm\left\{Im\right\}, G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\text{'}\right)\right\}\left\{omega-omega\text{'}\right\},$where $P$ denotes the principal value of the integral.

The spectral density obeys a sum rule::$int_\left\{-infty\right\}^\left\{infty\right\} frac\left\{mathrm\left\{d\right\}omega\right\}\left\{2pi\right\} ho\left(mathbf\left\{k\right\},omega\right) = 1,$which gives:$G^\left\{mathrm\left\{R\left(omega\right)simfrac\left\{1\right\}$as $|omega| ightarrow infty$.

Hilbert transform

The similarity of the spectral representations of the imaginary- and real-time Green functions allows us to define the function:$G\left(mathbf\left\{k\right\},z\right) = int_\left\{-infty\right\}^infty frac\left\{mathrm\left\{d\right\} x\right\}\left\{2pi\right\} frac\left\{ ho\left(mathbf\left\{k\right\},x\right)\right\}\left\{-z+x\right\},$which is related to $mathcal\left\{G\right\}$ and $G^\left\{mathrm\left\{R$ by:$mathcal\left\{G\right\}\left(mathbf\left\{k\right\},omega_n\right) = G\left(mathbf\left\{k\right\},mathrm\left\{i\right\}omega_n\right)$and:$G^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right) = G\left(mathbf\left\{k\right\},omega + mathrm\left\{i\right\}eta\right).$A similar expression obviously holds for $G^\left\{mathrm\left\{A$.

The relation between $G\left(mathbf\left\{k\right\},z\right)$ and $ho\left(mathbf\left\{k\right\},x\right)$ is referred to as a Hilbert transform.

Proof of spectral representation

We demonstrate the proof of the spectral representation of the propagator in the case of the thermal Green function, defined as:

Due to translational symmetry, it is only necessary to consider $mathcal\left\{G\right\}\left(mathbf\left\{x\right\} , au|mathbf\left\{0\right\},0\right)$ for $au > 0$, given by:Inserting a complete set of eigenstates gives:

Since $|alpha angle$ and $|alpha\text{'} angle$ are eigenstates of $H-mu N$, the Heisenberg operators can be rewritten in terms of Schr"odinger operators, giving:Performing the Fourier transform then gives:

Momentum conservation allows the final term to be written as (up to possible factors of the volume):
langlealpha' |psi^dagger(mathbf{k})|alpha angle|^2,which confirms the expressions for the Green functions in the spectral representation.

The sum rule can be proved by considering the expectation value of the commutator,:and then inserting a complete set of eigenstates into both terms of the commutator::

Swapping the labels in the first term then gives:
langlealpha | psi_mathbf{k}^dagger|alpha' angle|^2,which is exactly the result of the integration of $ho$.

Non-interacting case

In the non-interacting case, $psi_mathbf\left\{k\right\}^dagger|alpha\text{'} angle$ is an eigenstate with (grand-canonical) energy $E_\left\{alpha\text{'}\right\} + xi_mathbf\left\{k\right\}$, where $xi_mathbf\left\{k\right\} = epsilon_mathbf\left\{k\right\} - mu$ is the single-particle dispersion relation measured with respect to the chemical potential. The spectral density therefore becomes:

From the commutation relations,:$langlealpha\text{'} |psi_mathbf\left\{k\right\}psi_mathbf\left\{k\right\}^dagger|alpha\text{'} angle =langlealpha\text{'} |\left(1+zetapsi_mathbf\left\{k\right\}^daggerpsi_mathbf\left\{k\right\}\right)|alpha\text{'} angle,$with possible factors of the volume again. The sum, which involves the thermal average of the number operator, then gives simply $\left[1 + zeta n\left(xi_mathbf\left\{k\right\}\right)\right] mathcal\left\{Z\right\}$, leaving:$ho_0\left(mathbf\left\{k\right\},omega\right) = 2pidelta\left(xi_mathbf\left\{k\right\} - omega\right).$

The imaginary-time propagator is thus:$mathcal\left\{G\right\}_0\left(mathbf\left\{k\right\},omega\right) = frac\left\{1\right\}\left\{-mathrm\left\{i\right\}omega_n + xi_mathbf\left\{k$and the retarded propagator is:$G_0^\left\{mathrm\left\{R\left(mathbf\left\{k\right\},omega\right) = frac\left\{1\right\}\left\{-\left(omega+mathrm\left\{i\right\} eta\right) + xi_mathbf\left\{k.$

Zero-temperature limit

As , the spectral density becomes:$ho\left(mathbf\left\{k\right\},omega\right) = 2pisum_\left\{alpha\right\} left \left[ delta\left(E_alpha - E_0 - omega\right)$
langlealpha |psi_mathbf{k}^dagger|0 angle|^2- zeta delta(E_0 - E_{alpha} - omega)
langle0 |psi_mathbf{k}^dagger|alpha angle|^2 ight] where $alpha = 0$ corresponds to the ground state. Note that only the first (second) term contributes when $omega$ is positive (negative).

General case

Basic definitions

We can use `field operators' as above, or creation and annihilation operators associated with other single-particle states, perhaps eigenstates of the (noninteracting) kinetic energy. We then use:$psi\left(mathbf\left\{x\right\} , au\right) = varphi_alpha\left(mathbf\left\{x\right\} \right) psi_alpha\left( au\right),$where $psi_alpha$ is the annihilation operator for the single-particle state $alpha$ and $varphi_alpha\left(mathbf\left\{x\right\} \right)$ is that state's wavefunction in the position basis. This gives:with a similar expression for $G^\left\{\left(n\right)\right\}$.

Two-point functions

These depend only on the difference of their time arguments, so that:and:

We can again define retarded and advanced functions in the obvious way; these are related to the time-ordered function in the same way as above.

The same periodicity properties as described in above apply to . Specifically,:and:for $au < 0$.

pectral representation

In this case,:where $m$ and $n$ are many-body states.

The expressions for the Green functions are modified in the obvious ways::and:

Their analyticity properties are identical. The proof follows exactly the same steps, except that the two matrix elements are no longer complex conjugates.

Noninteracting case

If the particular single-particle states that are chosen are `single-particle energy eigenstates', ie,:$\left[H-mu N,psi_alpha^dagger\right] = xi_alphapsi_alpha^dagger,$then for $|n angle$ an eigenstate::$\left(H-mu N\right)|n angle = E_n |n angle,$so is $psi_alpha |n angle$::$\left(H-mu N\right)psi_alpha|n angle = \left(E_n - xi_alpha\right) psi_alpha |n angle,$and so is $psi_alpha^dagger|n angle$::$\left(H-mu N\right)psi_alpha^dagger|n angle = \left(E_n + xi_alpha\right) psi_alpha^dagger |n angle.$

We therefore have:where:
ilde{m angle} = frac{psi_alpha^dagger|m angle}.

We then rewrite:$psi_alpha psi_alpha^dagger = zeta psi_alpha^dagger psi_alpha + 1,$and use the fact that the thermal average of the number operator gives the Bose-Einstein or Fermi-Dirac distribution function.

Finally, the spectral density simplifies to give:so that the thermal Green function is:and the retarded Green function is:Note that the noninteracting Green function is diagonal, but this will not be true in the interacting case.

References

* Negele, J.W. and Orland, H.: "Quantum Many-Particle Systems" AddisonWesley (1988).

* Abrikosov, A.A., Gorkov, L.P. and Dzyaloshinski, I.E.: "Methods of Quantum Field Theory in Statistical Physics" Englewood Cliffs: Prentice-Hall (1963).

ee also

*Fluctuation theorem
*Green-Kubo_relations
*Linear response function

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Green's function — In mathematics, Green s function is a type of function used to solve inhomogeneous differential equations subject to boundary conditions. The term is used in physics, specifically in quantum field theory and statistical field theory, to refer to… …   Wikipedia

• Many-body problem — Quantum mechanics Uncertainty principle …   Wikipedia

• Correlation function (quantum field theory) — For other uses, see Correlation function (disambiguation). Quantum field theory …   Wikipedia

• Green–Kubo relations — give exact mathematical expression for transport coefficients in terms of integrals of time correlation functions.Thermal and mechanical transport processesThermodynamic systems may be prevented from relaxing to equilibrium because of the… …   Wikipedia

• Green function — might refer to:*Green s function of a differential operator. *Deligne Lusztig theory (Green function) in the representation theory of finite groups of Lie type. *Green s function in many body theory …   Wikipedia

• Theory of mind — is the ability to attribute mental states beliefs, intents, desires, pretending, knowledge, etc. to oneself and others and to understand that others have beliefs, desires and intentions that are different from one s own. Though there are… …   Wikipedia

• Green Goblin — Norman Osborn as the Green Goblin, art by Luke Ross. Publication information Publisher Marvel Comics …   Wikipedia

• theory — A reasoned explanation of known facts or phenomena that serves as a basis of investigation by which to seek the truth. SEE ALSO: hypothesis, postulate. [G. theoria, a beholding, speculation, t., fr. theoros, a beholder] adsorption t. of narcosis… …   Medical dictionary

• Quantum field theory — In quantum field theory (QFT) the forces between particles are mediated by other particles. For instance, the electromagnetic force between two electrons is caused by an exchange of photons. But quantum field theory applies to all fundamental… …   Wikipedia

• Dynamical mean field theory — (DMFT) is a method to determine the electronic structure of strongly correlated materials. In such materials, the approximation of independent electrons, which is used in Density Functional Theory and usual band structure calculations, breaks… …   Wikipedia