Umami


Umami
Ripe tomatoes are rich in umami components.

Umami /uːˈmɑːmi/, popularly referred to as savoriness,[1][2][3][4][5] is one of the five basic tastes together with sweet, sour, bitter, and salty.

Contents

Etymology

Umami is a loanword from the Japanese umami (うまみ ?) meaning "pleasant savory taste".[6] This particular writing was chosen by Professor Kikunae Ikeda from umai (うまい) "delicious" and mi (味) "taste". In Japan, while normally written in hiragana, the kanji (Chinese characters) 旨味 are used for a more general meaning, when a particular food is considered to be delicious.

Background

For a long time, scientists debated whether umami was indeed a basic taste; but in 1985 at the first Umami International Symposium in Hawaii, the term Umami was recognized as the scientific term to describe the taste of glutamates and nucleotides.[7] Now it is widely accepted as the fifth basic taste. Umami represents the taste of the amino acid L-glutamate and 5’-ribonucleotides such as guanosine monophosphate (GMP) and inosine monophosphate (IMP).[8] Although it can be described as a pleasant "brothy" or "meaty" taste with a long lasting, mouthwatering and coating sensation over the tongue, umami has no translation. Umami is known as umami in almost all major languages, including English, Portuguese, Spanish, French, etc. The sensation of umami is due to the detection of the carboxylate anion of glutamate in specialized receptor cells present on the human and animal tongue.[9][10] Its fundamental effect is the ability to balance taste and round the total flavor of a dish. Umami clearly enhances the palatability of a wide variety of foods (for review Beauchamp, 2009).[11] Glutamate in acid form (Glutamic acid) imparts little umami taste; whereas the salts of glutamic acid, such as monosodium glutamate, can easily ionize and give the characteristic umami taste. GMP and IMP amplify the taste intensity of glutamate.[10][12]

Discovery of umami taste

Kikunae Ikeda

Glutamate has a long history in cooking.[13] Fermented fish sauces (garum), rich in glutamate, were already used in ancient Rome.[14] In the late 1800s, chef Auguste Escoffier, who opened what was the most glamorous, expensive, and revolutionary restaurant in Paris, created meals that combined umami with salty, sour, sweet and bitter tastes.[15] He had not, however, known the chemical source for this unique quality.

Umami was not properly identified until 1908 by the scientist Kikunae Ikeda,[16] a Professor of the Tokyo Imperial University. He found that glutamate was responsible for the palatability of the broth from kombu seaweed. He noticed that the taste of kombu dashi was distinct from sweet, sour, bitter and salty and named it umami.

Later, a disciple of professor Ikeda, Shintaro Kodama, discovered in 1913 that dried bonito flakes contained another umami substance.[17] This was the ribonucleotide IMP. In 1957, Akira Kuninaka realized that the ribonucleotide GMP present in shiitake mushrooms also conferred the umami taste.[18] One of Kuninaka's most important discoveries was the synergistic effect between ribonucleotides and glutamate. When foods rich in glutamate are combined with ingredients that have ribonucleotides, the resulting taste intensity is higher than the sum of both ingredients.

This synergy of umami provides an explanation for various classical food pairings, starting with why Japanese make dashi with kombu seaweed and dried bonito flakes, and continuing with various other dishes: Chinese add Chinese leek and cabbage with chicken soup, as in the similar Scottish dish of cock-a-leekie soup, and Italians combine Parmesan cheese on tomato sauce with mushrooms. The umami taste sensation of those ingredients mixed together surpasses the taste of each one alone.

Properties of umami taste

Umami has a mild but lasting after-taste difficult to describe. It induces salivation and a furriness sensation on the tongue, stimulating the throat, the roof and the back of the mouth (for review Yamaguchi, 1998).[19][20] By itself, umami is not palatable, but it makes a great variety of foods pleasant especially in the presence of a matching aroma.[21] But like other basic tastes, with the exception of sucrose, umami is pleasant only within a relatively narrow concentration range.[19] The optimum umami taste depends also on the amount of salt, and at the same time, low-salt foods can maintain a satisfactory taste with the appropriate amount of umami.[22] In fact, Roinien et al. showed that ratings on pleasantness, taste intensity and ideal saltiness of low salt soups were greater when the soup contained umami, whereas low-salt soups without umami were less pleasant.[23] Some population groups, such as the elderly, may benefit from umami taste because their taste and smell sensitivity is impaired by age and multiple medications. The loss of taste and smell can contribute to a poor nutritional status increasing their risk of disease.[24]Numerous studies have indicated the beneficial effect of adding umami flavor to foods and the increased in food consumption in institutionalized elderly populations ([25],[26],[27]).

Salt reduction can improve certain disease state such hypertension. It has been suggested that umami flavor be added to food to increase the palatability of foods with reduced salt and fat ([28]

The U.S. food and Drug Administration (FDA) classified glutamate as a Generally Recognized As Safe or GRAS ([29]. In 1987, JECFA (Joint FAO/WHO Expert Committee onf food additives) conducted a comprehensive study and found that there was no indication of adverse health effects due to consumption of glutamate in food ([30]. This study also concluded that as there were no evidence regarding the consumption of additives (such as glutamate) and infants, it recommended that additives should not be used in infants.

There is no evidence to suggest correlation between the consumption of foods containing glutamate and adverse health effects, however, many consumers would prefer not having glutamate in their foods. As indicated above, there are some foods that naturally contain glutamate, but consumers are not aware of this. Manufracturers are aware that consumers are adverse to having glutamate in their foods, and in response to this, they have begun to label foods with names that consumers will not recognize as glutamate such as "hydrolyzed soy protein" ([31].

Foods rich in umami

Many foods that may be consumed daily are rich in umami. Naturally occurring glutamate can be found in meats and vegetables; whereas inosinate comes primarily from meats and guanylate from vegetables. Thus, umami taste is common to foods that contain high levels of L-glutamate, IMP and GMP, most notably in fish, shellfish, cured meats, vegetables (e.g. mushrooms, ripe tomatoes, Chinese cabbage, spinach, etc.) or green tea, and fermented and aged products (e.g. cheeses, shrimp pastes, soy sauce, etc.).[32]

Humans' first encounter with umami is often breast milk.[33] It contains roughly the same amount of umami as broths.

There are some distinctions among stocks from different countries. In Japanese cuisine, dashi gives a very pure umami taste sensation because it is not based on meats. In dashi, L-glutamate comes from sea kombu (Laminaria japonica) and inosinate from dried bonito flakes (katsuobushi) or small dried sardines (niboshi). In contrast, Western or Chinese broths have a more complex taste because of a wider mixture of amino acids from bones, meats and vegetables.

Taste receptors

All taste buds on the tongue and other regions of the mouth can detect umami taste independently of their location. The tongue map in which different tastes are distributed in different regions of the tongue is a common misconception. Biochemical studies have identified the taste receptors responsible for the sense of umami, a modified form of mGluR4, mGluR1 and taste receptor type 1 (T1R1 + T1R3), and all have been found in taste buds from any region of tongue.[34][35][36] The New York Academy of Sciences corroborated the acceptance of these receptors stating that "Recent molecular biological studies have now identified strong candidates for umami receptors, including the heterodimer T1R1/T1R3, and truncated type 1 and 4 metabotropic glutamate receptors missing most of the N-terminal extracellular domain (taste-mGluR4 and truncated-mGluR1) and brain-mGluR4."[9] Receptors mGluR1 and mGluR4 are specific to glutamate whereas T1R1 + T1R3 are responsible for the synergism already described by Akira Kuninaka in 1957. However, the specific role of each type of receptor in taste bud cells remains unclear. They are G protein-coupled receptors (GPCRs) with similar signaling molecules that include G proteins beta-gamma, PLCb2 and PI3-mediated release of calcium (Ca2+) from intracellular stores.[37] Ca2+ activates the selective cation channel transient receptor potential melastatin 5 (TrpM5) that leads to membrane depolarization and the consequent release of ATP and secretion of neurotransmitters including serotonin.[38][39][40][41] Cells responding to umami taste stimuli do not possess typical synapses, but ATP conveys taste signals to gustatory nerves and in turn to the brain that interprets and identifies the taste quality.[42][43]

fMRI studies identify the taste processing of umami in the brain to the middle insular cortex near an area that processes the taste of salt.[44]

Notes

  1. ^ "What is umami?". The Umami Information Center. http://www.umamiinfo.com/what-is-umami/. 
  2. ^ "You say savory, I say umami". http://www.foodprocessing.com/articles/2005/434.html. 
  3. ^ Issie Lapowsky (9 February 2010). "Umami, savory 'fifth taste,' now available in a tube in grocery stores". NY Daily News. http://www.nydailynews.com/lifestyle/food/2010/02/09/2010-02-09_umami_savory_fifth_taste_now_available_in_a_tube_in_grocery_stores.html. Retrieved 1 January 2011. 
  4. ^ "Cambridge Advanced Learner's Dictionary". Cambridge University Press. http://dictionary.cambridge.org/dictionary/british/umami. Retrieved 1 January 2011. 
  5. ^ "Merriam-Webster English Dictionary". Merriam-Webster, Incorporated. http://www.merriam-webster.com/dictionary/umami. Retrieved 1 January 2011. 
  6. ^ Jim Breen. "EDICT's entry for umami". http://www.csse.monash.edu.au/~jwb/cgi-bin/wwwjdic.cgi?1C. Retrieved 31 December 2010. 
  7. ^ Y. Kawamura and M.R. Kare, ed (1987). Umami: A basic taste,. New York,NJ: Marcel Dekker. 
  8. ^ Yamaguchi S, Kumiko N (April 2000). "Umami and Food Palatability". Journal of Nutrition 130 (4): 921S–26S. PMID 10736353. 
  9. ^ a b Thomas E. Finger, ed (2009). International Symposium on Olfaction and Taste, Volume 1170. Hoboken,NJ: The Annals of the New York Academy of Sciences. 
  10. ^ a b Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (November 2006). "The receptors and cells for mammalian taste". Nature 444 (7117): 288–94. doi:10.1038/nature05401. PMID 17108952. 
  11. ^ Beauchamp G (September 2009). "Sensory and receptor responses to umami: an overview of pioneering work". Am J Clin Nutr 90 (3): 723S–7S. doi:10.3945/ajcn.2009.27462E. PMID 19571221. 
  12. ^ Yasuo T, Kusuhara Y, Yasumatsu K, Ninomiya Y (October 2008). "Multiple receptor systems for glutamate detection in the taste organ". Biological & Pharmaceutical Bulletin 31 (10): 1833–7. doi:10.1248/bpb.31.1833. PMID 18827337. 
  13. ^ Lehrer, Jonah (2007). Proust was a Neuroscientist. Mariner Books. doi:0908/1043570. ISBN 9780547085906. 
  14. ^ Smriga M, Mizukoshi T, Iwata D, Sachise E, Miyano H, Kimura T, Curtis R (August 2010). "Amino acids and minerals in ancient remnants of fish sauce (garum) sampled in the "Garum Shop" of Pompeii, Italy". Journal of Food Composition and Analysis 23 (5): 442–446. doi:10.1016/j.jfca.2010.03.005. 
  15. ^ "Sweet, Sour, Salty, Bitter ... and Umami, NPR". Npr.org. 2007-11-05. http://www.npr.org/templates/story/story.php?storyId=15819485. Retrieved 2011-09-24. 
  16. ^ Ikeda K (November 2002). "New seasonings". Chemical Senses 27 (9): 847–9. doi:10.1093/chemse/27.9.847. PMID 12438213.  (partial translation of Ikeda, Kikunae (1909). "New Seasonings[japan.]". Journal of the Chemical Society of Tokyo 30: 820–836. )
  17. ^ Kodama S (1913). Journal of the Chemical Society of Japan 34: 751. 
  18. ^ Kuninaka A (1960). Journal of the Agricultural Chemical Society of Japan 34: 487–492. 
  19. ^ a b Yamaguchi S (1998). "Basic properties of umami and its effects on food flavor". Food Reviews International 14 (2&3): 139–176. doi:10.1080/87559129809541156. 
  20. ^ Uneyama H, Kawai M, Sekine-Hayakawa Y, Torii K (August 2009). "Contribution of umami taste substances in human salivation during meal". Journal of Medical Investigation 56 (supplement): 197–204. doi:10.2152/jmi.56.197. PMID 20224181. 
  21. ^ Edmund Rolls (September 2009). "Functional neuroimaging of umami taste: what makes umami pleasant?". The American Journal of Clinical Nutrition 90 (supplement): 804S–813S. doi:10.3945/ajcn.2009.27462R. PMID 19571217. 
  22. ^ Yamaguchi S, Takahashi; Takahashi, Chikahito (1984). "Interactions of monosodium glutamate and sodium chloride on saltiness and palatability of a clear soup". Journal of Food Science 49: 82–85. doi:10.1111/j.1365-2621.1984.tb13675.x. 
  23. ^ Roininen K, Lahteenmaki K, Tuorila H (September 1996). "Effect of umami taste on pleasentness of low salt soups during repeated testing". Physiology & Behavior 60 (3): 953–958. PMID 8873274. 
  24. ^ Yamamoto S, Tomoe M, Toyama K, Kawai M, Uneyama H (July 2009). "Can dietary supplementation of monosodium glutamate improve the health of the elderly?". Am J Clin Nutr 90 (3): 844S–849S. doi:10.3945/ajcn.2009.27462X. PMID 19571225. 
  25. ^ Bellisle F, Monneuse MO, Chabert M, Lanteaume MT, Louise-Sylvestre J. (1991). Monosodium glutamate as a palatability enhancer in European diet.Physiology and Behavior;49:869-874.
  26. ^ Imai y, Hasegawa, K. (1994). The revised Hasegawa's dementia scale (HDS-R). Evaluation of its usefulness as a screening test for dementia. J Hong Kong College of Psychiatry;4(SP2):20-24.
  27. ^ Shiffman SS, Warwic ZS. (1993) Effect of flavor enhancement of foods for the elderly on nutritional status. Food intake, biochemical indices, and anthropometric measures. Physiology and Behavior;53:395-402
  28. ^ Jinap S, Hajeb P. (2010). Glutamate. Its applications in food and contribution to health. Appetite; 55:1-10.)
  29. ^ U.S. Department of Health and Human Services (USDHHS. (1958). Subpart A-General Provisions:substances that are generally recognized as safe. Code of Federal Regulations:Food and Drugs 21, No. 182.1(a)
  30. ^ JECFA(1988). Joint FAO/WHO Expert Committee on food Additives L-glutamic acid and its ammonium, calcium, monosodium and potassium salts.Toxicological Evaluation of Certain Food Additives and Contaminants;1988:97-161.New York Cambridge University Press.
  31. ^ Jinap S, Hajeb P. (2010). Glutamate. Its applications in food and contributions to health. Appetite;55:1-10.
  32. ^ Ninomiya K (1998). "Natural Occurrence". Food Reviews International 14 (2&3): 177–211. doi:10.1080/87559129809541157. 
  33. ^ Agostini C, Carratu B, Riva E, Sanzini E (August 2000). "Free amino acid content in standard infant formulas: comparison with human milk". Journal of American College of Nutrition 19 (4): 434–438. PMID 10963461. 
  34. ^ Chaudhari N, Landin AM, Roper SD (2000). "A metabotropic glutamate receptor variant functions as a taste receptor". Nature Neuroscience 3 (2): 113–119. doi:10.1038/72053. PMID 10649565. 
  35. ^ Nelson G, Chandrashekar J, Hoon MA et al. (2002). "An amino-acid taste receptor". Nature 416 (6877): 199–202. doi:10.1038/nature726. PMID 11894099. 
  36. ^ San Gabriel A, Uneyama H, Yoshie S, Torii K (2005). "Cloning and characterization of a novel mGluR1 variant from vallate papillae that functions as a receptor for L-glutamate stimuli". Chem Senses 30 (Suppl): i25–i26. doi:10.1093/chemse/bjh095. PMID 15738140. 
  37. ^ Kinnamon SC (2011). "Taste receptor signaling -from tongues to lungs". Acta Physiol: no–no. doi:10.1111/j.1748-1716.2011.02308.x. PMID 21481196. 
  38. ^ Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002). "A transient receptor potential channel expression in taste receptor cells". Nat Neurosci 5 (11): 1169–76. doi:10.1038/nn952. PMID 12368808. 
  39. ^ Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003). "Coding sweet, bitter, and umami tastes: different receptor cells sharing signaling pathways". Cell 112 (3): 293–301. doi:10.1016/S0092-8674(03)00071-0. PMID 12581520. 
  40. ^ Dando R, Roper SD (2009). "Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels". J Physiol 587 (2): 5899–906. doi:10.1016/S0092-8674(03)00071-0. PMID 12581520. 
  41. ^ Roper SD (August 2007). "Signal transduction and information processing in mammalian taste buds". Pflügers Archiv 454 (5): 759–76. doi:10.1007/s00424-007-0247-x. PMID 17468883. 
  42. ^ Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC (2004). "Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway". J Comp Neurol 468 (3): 311–321. doi:10.1002/cne.10963. PMID 14681927. 
  43. ^ Iwatsuki K, Ichikawa R, Hiasa M, Moriyama Y, Torii K, Uneyama H (2009). "Identification of the vesicular nucleotide transporter (VNUT) in taste cells". Biochem Biophys Res Commun 388 (1): 1–5. doi:10.1016/j.bbrc.2009.07.069. PMID 19619506. 
  44. ^ Nakamura Y, Goto TK, Tokumori K, Yoshiura T, Kobayashi K, Nakamura Y, Honda H, Ninomiya Y, Yoshiura K. (2011). Brain Res. Localization of brain activation by umami taste in humans. Aug 11;1406:18-29. PMID 21762881 doi: 10.1016/j.brainres.2011.06.029

References

  • Flavor Chemistry: Thirty Years of Progress By Roy Teranishi, Emily L. Wick, Irwin Hornstein; Article: Umami and Food Palatability, by Shizuko Yamaguchi and Kumiko Ninomiya. ISBN 0-306-46199-4
  • Barbot, Pascal; Matsuhisa, Nobu; and Mikuni, Kiyomi. Foreword by Heston Blumenthal. Dashi and Umami: The Heart of Japanese Cuisine. London: Eat-Japan / Cross Media, 2009

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Umami — (旨味, Umami?) est à la fois un nom commun et un adjectif japonais, qu on peut traduire par savoureux ou délicieux, désignant l une des cinq saveurs fondamentales pouvant être identifiées par le sens du goût. Il s agit de la saveur particulière que …   Wikipédia en Français

  • Umami — Saltar a navegación, búsqueda Umami (うま味) es uno de los cinco sabores básicos que reconocen los receptores especializados de la lengua humana, además de dulce, salado, amargo y ácido.[1] Es una palabra japonesa que significa sabroso. El ácido… …   Wikipedia Español

  • Umami — Kikunae Ikeda Umami (jap. 旨味) ist die Bezeichnung für eine der Grundqualitäten des Geschmackssinns. Als erster beschrieb der japanische Forscher Kikunae Ikeda 1908 die Geschmacksqualität umami (von jap. 旨い umai, dt. „fleischig und herzhaft,… …   Deutsch Wikipedia

  • Umami — U|ma|mi [nominalisiert aus jap. umai = Wohlschmeckendes, Leckeres]: Bez. sowohl für eine Geschmacksrichtung (salzig süßlich säuerlich) als auch für eine geschmackverstärkende Eigenschaft bei Natriumglutamat, einigen Nukleotiden u. a. Verbindungen …   Universal-Lexikon

  • umami — uma·mi ü mä mē n a taste sensation that is meaty or savory and is produced by several amino acids and nucleotides (as aspartate, inosinate, and glutamate) umami adj …   Medical dictionary

  • umami — u|ma|mi sb. (en smagskvalitet); surt, salt, sødt, bittert og umami …   Dansk ordbog

  • Umami —    L umami est l indicateur de la sapidité en bouche …   L'Abécédaire du Vin

  • umami — üˈmämē Etymology: Japanese, literally, taste, flavor, delicious flavor, from uma tasty + mi flavor, taste : a taste sensation that is meaty or savory and is produced by several amino acids and nucleotides (as glutamate and aspartate) • umami… …   Useful english dictionary

  • umami — noun Etymology: Japanese, savoriness, flavor Date: 1979 a taste sensation that is meaty or savory and is produced by several amino acids and nucleotides (as glutamate and aspartate) …   New Collegiate Dictionary

  • umami — noun One of the five basic tastes, the meaty or savory taste of glutamate proteins or other similar compounds, notably monosodium glutamate. Syn: meaty, savory …   Wiktionary