Carl David Tolmé Runge


Carl David Tolmé Runge

Infobox_Scientist
name = Carl Runge
box_width = 26em


image_width =
caption = Carl David Tolmé Runge
birth_date = birth date|1856|8|30|mf=y
birth_place = Bremen, German Reich
death_date = death date and age|1927|1|3|1856|8|30
death_place = Göttingen, German Reich
residence = German Reich
citizenship = German
nationality =
field = Mathematics
Physics
work_institution = University of Hannover (1886-1904)
Georg-August University of Göttingen (1904-1925)
alma_mater = Berlin University
doctoral_advisor = Karl Weierstrass
Ernst Kummer
doctoral_students = Max Born
known_for = Runge-Kutta method
Runge's phenomenon
prizes =
footnotes =

Carl David Tolmé Runge (pronounced IPA|/ˈʀuŋˌge/) (August 30 1856 – January 3 1927) was a German mathematician, physicist, and spectroscopist.

He was co-developer and co-eponym of the Runge–Kutta method (pronounced IPA|/ˌʀuŋgeˈkuta/), in the field of what is today known as numerical analysis.

He spent the first few years of his life in Havana, where his father Julius Runge was the Danish consul. The family later moved to Bremen, where his father died early (in 1864).

In 1880 he received his Ph.D. in mathematics at Berlin, where he studied under Karl Weierstrass. In 1886 he became a professor in Hannover, Germany.

His interests included mathematics, spectroscopy, geodesy and astrophysics. In addition to pure mathematics he did a great deal of experimental work studying spectral lines of various elements (together with Heinrich Kayser), and was very interested in the application of this work to astronomical spectroscopy.

In 1904, on the initiative of Felix Klein he received a call to the Georg-August University of Göttingen, which he accepted. There he remained until his retirement in 1925.

Runge crater on the Moon is named after him.

See also:

*Runge's phenomenon
*Runge's method for diophantine equations.

Works by C. Runge

* [http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN317854747 Ueber die Krümmung, Torsion und geodätische Krümmung der auf einer Fläche gezogenen Curven] (PhD dissertation, Friese, 1880)
* [http://name.umdl.umich.edu/ABN6667.0001.001 Analytische Geometrie der Ebene] (B.G. Teubner, Leipzig, 1908)
* [http://www.archive.org/details/graphmethods00rungrich Graphical methods; a course of lectures delivered in Columbia university, New York, October, 1909, to January, 1910] (Columbia University Press, New York, 1912)
* Carl Runge und Hermann König [http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN373207646 Vorlesungen über numerisches Rechnen] (Springer, Heidelberg, 1924)
* [http://www.archive.org/details/graphischenmetho003786mbp Graphischen Methoden] (Teubner, 1928)

Bibliography

* F. Paschen: [http://adsabs.harvard.edu//full/seri/ApJ../0069//0000317.000.html "Carl Runge"] , "Astrophysical Journal" 69:317–321, 1929. doi|10.1086/143192.
* Iris Runge: "Carl Runge und sein wissenschaftliches Werk", Vandenhoeck & Ruprecht, Göttingen 1949.

External links

*
* [http://numericalmethods.eng.usf.edu/anecdotes/runge.html Biography]
*

Persondata
NAME= Runge, Carl
ALTERNATIVE NAMES= Runge, Carl David Tolmé
SHORT DESCRIPTION= German mathematician and physicist
DATE OF BIRTH= August 30 1856
PLACE OF BIRTH= Bremen, Germany
DATE OF DEATH= January 3 1927
PLACE OF DEATH= Göttingen, Germany


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Carle David Tolmé Runge — Saltar a navegación, búsqueda Carle David Tolmé Runge Carle David Tolmé Runge (30 de agosto de 1856 – 3 de enero de 1927) fue un matemático, físico y espectroscopista alemán. Su primer nombre suele escr …   Wikipedia Español

  • Carl Runge — Carl David Tolmé Runge (* 30. August 1856 in Bremen; † 3. Januar 1927 in Göttingen) war ein deutscher Mathematiker. Biografie Jugend und Ausbildung Runge war der Sohn des Kaufmanns Julius Runge seiner Frau Fanny Tolmé (gebürtige Engländerin).… …   Deutsch Wikipedia

  • Carl Runge — Carl David Tolmé Runge, né le 30 août 1856 et mort le 3 janvier 1927, fut un mathématicien et physicien allemand. Il a co développé avec Martin Wilhelm Kutta une des méthodes de résolution numérique pour les équations… …   Wikipédia en Français

  • Runge's phenomenon — red|the Runge function. The blue curve is blue|a 5th order interpolating polynomial (using six equally spaced interpolating points). The green curve is green|a 9th order interpolating polynomial (using ten equally spaced interpolating points). At …   Wikipedia

  • Runge — Rụn|ge 〈f. 19〉 am Leiterwagen außen auf der Radnabe befestigter, senkrechter, bis zum oberen Rand der Leiter reichender Balken mit einer Haltevorrichtung, in der die Leiter hängt [<ahd. runga „Stange, Stemmleiste am Wagen“, got. hrugga „Stab“ …   Universal-Lexikon

  • Método de Runge-Kutta — El método de Runge Kutta es un método genérico de resolución numérica de ecuaciones diferenciales. Este conjunto de métodos fue inicialmente desarrollado alrededor del año 1900 por los matemáticos C. Runge y M. W. Kutta. Contenido 1 Descripción 1 …   Wikipedia Español

  • Liste der Krater des Erdmondes/R — Liste der Krater des Erdmondes   A B C D E F G H I J K L M …   Deutsch Wikipedia

  • Рунге, Карл — Карл Рунге Карл Давид Тольме Рунге (Carl David Tolmé Runge) (30 августа 1856(18560830), Бремен 3 января 1927, Гёттинген) немецкий математик, физик и спектроскопист. Первые годы своей жизни провёл в Гаване, где его отец Юлиус Р …   Википедия

  • Карл Рунге — Карл Давид Тольме Рунге (Carl David Tolmé Runge) (* 30 августа 1856 , Бремен, † 3 января 1927, Геттинген) – немецкий математик и физик. После окончания университета в Берлине, где математику преподавал Вейерштрасс, Рунге был профессором… …   Википедия

  • Рунге Карл — Карл Рунге Карл Давид Тольме Рунге (Carl David Tolmé Runge) (* 30 августа 1856 , Бремен, † 3 января 1927, Геттинген) – немецкий математик и физик. После окончания университета в Берлине, где математику преподавал Вейерштрасс, Рунге был… …   Википедия


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.