Compact convergence

Compact convergence

In mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence which generalizes the idea of uniform convergence. It is associated with the compact-open topology.



Let (X, \mathcal{T}) be a topological space and (Y,dY) be a metric space. A sequence of functions

f_{n} : X \to Y, n \in \mathbb{N},

is said to converge compactly as n \to \infty to some function f : X \to Y if, for every compact set K \subseteq X,

(f_{n})|_{K} \to f|_{K}

converges uniformly on K as n \to \infty. This means that for all compact K \subseteq X,

\lim_{n \to \infty} \sup_{x \in K} d_{Y} \left( f_{n} (x), f(x) \right) = 0.


  • If X = (0, 1) \subset \mathbb{R} and Y = \mathbb{R} with their usual topologies, with fn(x): = xn, then fn converges compactly to the constant function with value 0, but not uniformly.
  • If X = (0,1], Y=\R and fn(x) = xn, then fn converges pointwise to the function that is zero on (0,1) and one at 1, but the sequence does not converge compactly.
  • A very powerful tool for showing compact convergence is the Arzelà–Ascoli theorem. There are several versions of this theorem, roughly speaking it states that every sequence of equicontinuous and uniformly bounded maps has a subsequence which converges compactly to some continuous map.


  • If f_{n} \to f uniformly, then f_{n} \to f compactly.
  • If (X, \mathcal{T}) is a compact space and f_{n} \to f compactly, then f_{n} \to f uniformly.
  • If (X, \mathcal{T}) is locally compact, then f_{n} \to f compactly if and only if f_{n} \to f locally uniformly.
  • If (X, \mathcal{T}) is a compactly generated space, f_n\to f compactly, and each fn is continuous, then f is continuous.

See also


  • R. Remmert Theory of complex functions (1991 Springer) p. 95

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Compact-open topology — In mathematics, the compact open topology is a topology defined on the set of continuous maps between two topological spaces. The compact open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory… …   Wikipedia

  • Convergence Uniforme — Suite de fonctions convergeant uniformément vers la fonction valeur absolue. La convergence uniforme d une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. Cette dern …   Wikipédia en Français

  • Compact Software — was the first successful microwave computer aided design (CAD) company. Contents 1 History 2 Notes 3 References 3.1 Articles by Besser …   Wikipedia

  • Convergence uniforme — Suite de fonctions convergeant uniformément vers la fonction valeur absolue. La convergence uniforme d une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. Cette dernière demande en effet seulement que,… …   Wikipédia en Français

  • Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… …   Wikipedia

  • Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… …   Wikipedia

  • Convergence of measures — In mathematics, more specifically measure theory, there are various notions of the convergence of measures. Three of the most common notions of convergence are described below. Contents 1 Total variation convergence of measures 2 Strong… …   Wikipedia

  • Convergence simple — En mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est à dire dans un ensemble de fonctions entre deux espaces topologiques. C est une définition peu exigeante : elle est plus… …   Wikipédia en Français

  • Convergence normale — En analyse, la convergence normale est l un des modes de convergence d une série de fonctions. Si (fn) est une suite de fonctions à valeurs réelles ou complexes définies sur un même ensemble X, la série de terme général fn converge normalement… …   Wikipédia en Français

  • Modes of convergence (annotated index) — The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of… …   Wikipedia