- Second harmonic generation
**Second harmonic generation**(**SHG**; also called**frequency doubling**) is a nonlinear optical process, in whichphoton s interacting with a nonlinear material are effectively "combined" to form new photons with twice the energy, and therefore twice thefrequency and half thewavelength of the initial photons.Second harmonic generation was first demonstrated by P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich at the

University of Michigan , Ann Arbor, in 1961. The demonstration was made possible by the invention of thelaser , which created the required high intensity monochromatic light. They focused a ruby laser with a wavelength of 694 nm into a quartz sample. They sent the output light through aspectrometer , recording the spectrum on photographic paper, which indicated the production of light at 347 nm. Famously, when published in the journal "Physical Review Letters" (citation below), the copy-editor mistook the dim spot (at 347 nm) on the photographic paper as a speck of dirt and removed it from the publication.In recent years, SHG has been extended to biological applications. Researchers Leslie Loew and Paul Campagnola at the

University of Connecticut have applied SHG to imaging of molecules that are intrinsically second-harmonic-active in live cells, such as collagen, while Joshua Salafsky [*[*] is pioneering the technique's use for studying biological molecules by labeling them with second-harmonic-active tags, in particular as a means to detect conformational change at any site and in real time. SH-active unnatural amino acids can also be used as probes.*http://www.biodesy.com Biodesy*]**Derivation of Second Harmonic Generation**The simplest case for analysis of second harmonic generation is a plane wave of amplitude $E(omega)$ traveling in a nonlinear medium in the direction of its $k$ vector. A polarization is generated at the second harmonic frequency

:$P(2omega)\; =\; 2epsilon\_0d\_\{eff\}(2omega\; ;omega,omega)E^2(omega),\; ,$

where $2d\_\{eff\}=chi^\{(2)\}$.The wave equation at $2omega$ (assuming negligible loss and asserting the slowly varying envelope approximation) is

:$frac\{partial\; E(2omega)\}\{partial\; z\}=-frac\{iomega\}\{n\_\{2omega\}c\}d\_\{eff\}E^2(omega)e^\{iDelta\; k\; z\}$

where $Delta\; k=k(2omega)-2k(omega)$.

At low conversion efficiency ($E(2omega)<(omega)\; math>\; the\; amplitude$ E(omega)$remains\; essentially\; constant\; over\; the\; interaction\; length,$ l$.\; Then,\; with\; the\; boundary\; condition$ E(2omega,z=0)=0$we\; get$

$E(2omega,z=l)=-frac\{iomega\; d\_\{eff\{n\_\{2omega\}c\}E^2(omega)int\_0^l\{e^\{iDelta\; k\; z=-frac\{iomega\; d\_\{eff\{n\_\{2omega\}c\}E^2(omega)lfrac\{sin\{Delta\; k\; l/2\{Delta\; k\; l/2\}e^\{iDelta\; k\; l/2\}$

In terms of the optical intensity, $I=n/2sqrt\{epsilon\_0/mu\_0\}|E|^2$, this is,

$I(2omega,l)=frac\{2omega^2d^2\_\{eff\}l^2\}\{n\_\{2omega\}n\_\{omega\}^2c^3epsilon\_0\}(frac\{sin\{(Delta\; k\; l/2)\{Delta\; k\; l/2\})^2I^2(omega)$

This intensity is maximized for the phase matched condition $Delta\; k=0$. If the process is not phase matched, the driving polarization at $2omega$ goes in and out of phase with generated wave $E(2omega)$ and conversion oscillates as $sin\{(Delta\; k\; l/2)\}$. The coherence length is defined as $l\_c=frac\{pi\}\{Delta\; k\}$. It does not pay to use a nonlinear crystal much longer than the coherence length. (

Periodic poling andQuasi-phase-matching provide another approach to this problem.)**econd Harmonic Generation with Depletion**When the conversion to second harmonic becomes significant it becomes necessary to include depletion of the fundamental. One then has the coupled equations:

$frac\{partial\; E(2omega)\}\{partial\; z\}=-frac\{iomega\}\{n\_\{2omega\}c\}d\_\{eff\}E^2(omega)e^\{iDelta\; k\; z\}$,

$frac\{partial\; E(omega)\}\{partial\; z\}=-frac\{iomega\}\{n\_\{omega\}c\}d\_\{eff\}^*E(2omega)E^*(omega)e^\{-iDelta\; k\; z\}$,

where $*$ denotes the complex conjugate. For simplicity, assume phase matched generation ($Delta\; k=0$). Then, energy conservation requires that

$n\_\{2omega\}\; [E^*(2omega)frac\{partial\; E(2omega)\}\{partial\; z\}+c.c.]\; =-n\_omega\; [E(omega)frac\{partial\; E^*(omega)\}\{partial\; z\}+c.c.]$

where $c.c.$ is the complex conjugate of the other term, or

$n\_\{2omega\}|E(2omega)|^2+n\_omega|E(omega)|^2=n\_\{2omega\}E\_0^2$.

Now we solve the equations with the premise

$E(omega)=|E(omega)|e^\{iphi(omega)\}$

$E(2omega)=|E(2omega)|e^\{iphi(2omega)\}$

We get

$frac\{d|E(2omega)\{dz\}=-frac\{iomega\; d\_\{eff\{n\_omega\; c\}\; [E\_0^2-|E(2omega)|^2]\; e^\{2iphi(omega)-iphi(2omega)\}$

$int\_0^\{|E(2omega)|l\}\{frac\{d|E(2omega)\}\{E\_0^2-|E(2omega)|^2=-int\_0^l\{frac\{iomega\; d\_\{eff\{n\_omega\; c\}dz\}$

Using

$int\{frac\{dx\}\{a^2-x^2=frac\{1\}\{a\}\; anh^-1\{frac\{x\}\{a$

we get

$|E(2omega)|\_\{z=l\}=E\_0\; anh\{(frac\{-iE\_0lomega\; d\_\{eff\{n\_omega\; c\}e^\{2iphi(omega)-iphi(2omega)\})\}$

If we assume a real $d\_\{eff\}$, the relative phases for real harmonic growth must be such that $e^\{2iphi(omega)-iphi(2omega)\}=i$. Then

$I(2omega,l)=I(omega,0)\; anh^2(frac\{E\_0omega\; d\_\{eff\}l\}\{n\_omega\; c\})$

or

$I(2omega,l)=i(omega,0)tanh^2\{(Gamma\; l)\}$,

where $Gamma=omega\; d\_\{eff\}E\_0/nc$. From $I(2omega,l)+I(omega,l)=I(omega,0)$, it also follows that

$I(omega,l)=I(omega,0)sech^2\{(Gamma\; l)\}$.

**Types of SHG**Second harmonic generation occurs in two types, denoted I and II. In

**Type I SHG**two photons having ordinary polarization with respect to the crystal will combine to form one photon with double the frequency and extraordinary polarization. In**Type II SHG**, two photons having orthogonal polarization will combine to form one photon with double the frequency and extraordinary polarization. For a given crystal orientation, only one of these type of SHG occurs.**Common Uses**Second harmonic generation is used by the laser enthusiast industry to make green 532nm lasers from an 808nm source. The source is converted to 1064nm by a crystal, then fed through a KDP second harmonic crystal. This is capped by an infrared filter to prevent leakage of any infrared that would be harmful to the human eyes

**Historical note**Generating the second harmonic, often called frequency doubling, is also a process in radio communication; it was developed early in the 20th century, and has been used with frequencies in the MHz range.

**External links****Notes****Articles on Second Harmonic Generation**

*Franken, P. A., Hill, A. E., Peters, C.W., and Weinreich, G., " [*http://link.aps.org/abstract/PRL/v7/p118 Generation of Optical Harmonics*] ", "Phys. Rev. Lett."**7**, p. 118–119 (1961). DOI: doi|10.1103/PhysRevLett.7.118

*Parameswaran, K. R., Kurz, J. R., Roussev, M. M. & Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide", "Optics Letters",**27**, p. 43-45 (January 2002).

*cite web|url=http://www.rp-photonics.com/frequency_doubling.html |title=Frequency doubling|work= Encyclopedia of laser physics and technology|accessdate=2006-11-04**Companies involved with SHG generation and products**

* [*http://www.advr-inc.com/waveguide.html AdvR - Frequency Conversion in KTP Waveguides*]

* [*http://www.radiantis.com Radiantis*]

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Surface second harmonic generation**— is a method for probing interfaces in atomic and molecular systems. In second harmonic generation (SHG), the light frequency is doubled, essentially converting two photons of the original beam of energy E into a single photon of energy 2 E as it… … Wikipedia**Second harmonic imaging microscopy**— (SHIM) is based on a nonlinear optical effect known as second harmonic generation (SHG). SHIM has been established as a viable microscope imaging contrast mechanism for visualization of cell and tissue structure and function. A second harmonic… … Wikipedia**Harmonic generation**— Perturbative Harmonic Generation Perturbative Harmonic Generation is a process where by laser lightof frequency ω and photon energy ħω can be usedto generate new frequencies of light. The newly generatedfrequencies are integer multiples of the… … Wikipedia**Sum frequency generation**— (SFG) is an example of a second order non linear optical process.This phenomenon is based on the annihilation of two input photons at frequencies omega 1 and omega 2 while, simultaneously, one photon at frequency omega 3 is generated.In order… … Wikipedia**SHG**— Second Harmonic Generation (Academic & Science » Electronics) ** Self Help Group (Community » Religion) ** Self Help Group (Community) * Social Housing Grant (Community) * Strictly High Grown (Miscellaneous » Food) * Sacred Heart Griffin High… … Abbreviations dictionary**Multiphotonenmikroskop**— Zweiphotonen Fluoreszenzaufnahme an einem Schnitt durch einen Mausdarm. Zellkerne in grün, Schleim der Becherzellen in blau, Aktin (Phalloidin Färbung) in rot. Anregung erfolgte bei 780 nm durch einen Titan:Saphir Laser. Ein… … Deutsch Wikipedia**Multiphotonenmikroskopie**— Zweiphotonen Fluoreszenzaufnahme an einem Schnitt durch einen Mausdarm. Zellkerne in grün, Schleim der Becherzellen in blau, Aktin (Phalloidin Färbung) in rot. Anregung erfolgte be … Deutsch Wikipedia**Zwei-Photonen-Mikroskop**— Zweiphotonen Fluoreszenzaufnahme an einem Schnitt durch einen Mausdarm. Zellkerne in grün, Schleim der Becherzellen in blau, Aktin (Phalloidin Färbung) in rot. Anregung erfolgte bei 780 nm durch einen Titan:Saphir Laser … Deutsch Wikipedia**Nonlinear optics**— (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed… … Wikipedia**Frequency comb**— A frequency comb is the graphic representation of the spectrum of a mode locked laser. An octave spanning comb can be used for mapping radio frequencies into the optical frequency range or it can be used to steer a piezoelectric mirror within a… … Wikipedia