Upper Atmosphere Research Satellite


Upper Atmosphere Research Satellite

The Upper Atmosphere Research Satellite (UARS) is an orbital observatory whose mission is to study the Earth’s atmosphere, particularly the protective ozone layer.

The 5900 kg (13,000 lb) satellite was launched during Space Shuttle mission STS-48 in 1991. The original mission life was to be three years. As of June 2005, six of the ten instruments were still operational. UARS orbits at an altitude of 375 miles with an orbital inclination of 57 degrees.

A final orbit lowering burn, followed by the "passivation" of the Satellite's systems was performed in early December, 2005.

Chemical studies instruments

Cryogenic Limb Array Etalon Spectrometer (CLAES)

CLAES is a spectrometer that determines the concentrations and distributions of nitrogen and chlorine compounds, ozone, water vapor and methane. It does this by inferring the amount of gases in the atmosphere by measuring the unique infrared signature of each gas.

In order to differentiate the relatively weak signature of gases from the background radiation in the atmosphere, CLAES had to have high resolution and sensitivity. To achieve this, the instrument combined a telescope with an infrared spectrometer. The whole instrument was cryogenically cooled to keep heat from the instrument from interfering with the readings. The cryogenics system consists of an inner tank of solid neon at −257 °C (−430 °F) and an outer tank of solid carbon dioxide at −150 °C (−238 °F). As the neon and carbon dioxide evaporated, they kept the instrument cool. The final cryogens evaporated from the instrument on May 5, 1993 and the instrument warmed up ending its useful life.

The instrument looked sideways out of the UARS platform to allow the instrument to look through the stratosphere and the lower mesosphere. CLAES produced a 19-month global database showing the vertical distributions of important ozone-layer gases in the stratosphere and their variation with time of day, season, latitude, and longitude.

Improved Stratospheric and Mesospheric Sounder (ISAMS)

ISAMS is an infrared radiometer for measuring thermal emission from the Earth’s limb (the line of the horizon as seen from UARS), on both sides of the spacecraft. It used the pressure-modulation technique to obtain high spectral resolution, and innovative stirling-cycle coolers to achieve high detector senstivity. The specific objectives of ISAMS were (i) To obtain measurements of atmospheric temperature as a function of pressure, from the tropopause to the mesopause, with good accuracy and spatial resolution, and hence to study the structure and dynamics of the region, (ii) To investigate the distribution and variability of water vapour in the middle atmosphere, to determine its role in the atmospheric general circulation, and its sources and sinks in the middle atmosphere, (iii) To measure the global distribution of oxides of nitrogen and hence to investigate their origins and their roles in catalytic cycles which control the amount of ozone in the stratospheric ozone layer. It also made extensive observations of volcanic aerosols and polar stratospheric clouds in the middle atmosphere. The instrument operated from September 1991–July 1992.

Microwave Limb Sounder (MLS)

The MLS detects naturally occurring microwave thermal emissions from Earth’s limb to create vertical profiles of atmospheric gases, temperature, pressure and cloud ice. MLS looks 90° from the angle of UARS’ orbit.

Thermal radiation enters the instrument through a three-mirror antenna system. The antenna mechanically scans in the vertical plane through the atmospheric limb every 65.5 seconds. The scan covers a height range from the surface up to 90 km (55 miles). Upon entering the instrument, the signal from the antenna is separated into three signals for processing by different radiometers. The 63-GHz radiometer measures temperature and pressure. The 183-GHz radiometer measures water vapor and ozone. The 205-GHz radiometer measures ClO, ozone, sulfur dioxide, nitric acid and water vapor.

As of June 2005, the 63- and 205-GHz radiometers are operational. The 183-GHz radiometer failed after 19 months of operation.

Halogen Occultation Experiment (HALOE)

HALOE uses solar occultation to measure simultaenous vertical profiles of Ozone (O3), Hydrogen Chloride (HCl), hydrogen fluoride (HF), Methane (CH4), Water Vapor (H2O), Nitric oxide (NO), Nitrogen Dioxide (NO2), Temperature, Aerosol Extinction, Aerosol composition and size distribution versus atmospheric pressure at the Earth’s limb. The measurements are done at eight different wavelengths of infrared across a 1.6 km (1.0 mile) wide field of view of Earth’s limb.

A vertical scan of the atmosphere is obtained by tracking the sun during occultation. The scan will measure the amount of solar energy absorbed by gases in the atmosphere.

In order to support scanning, the instrument comes in two parts, the optics unit on a two-axis gimbal and a fixed electronics unit. The optics unit contains a telescope that collects solar energy as well as the gas detectors. The electronics unit handles data, motor control and power for the instrument.

Dynamics instruments

High Resolution Doppler Imager (HRDI)

HRDI observes the emission and absorption lines of molecular oxygen above the limb of the Earth, uses the Doppler shift of the lines to determine horizontal winds and uses the line shapes and strengths to obtain information about temperature and atmospheric make-up.

The instrument consists of two parts, the telescope and the interferometer which consists of an optical bench and support electronics.

The telescope uses a narrow field of view to prevent Doppler shift variation across the field of view from distorting the results. Input from the telescope is fed to the processor via a fiber optic cable.

HRDI conducted scientific operations from November 1991 until April 2005. [http://hrdi.engin.umich.edu/]

Wind Imaging Interferometer (WINDII)

The WINDII instrument measures wind, temperature and emission rate from airglow and aurora. The instrument looks at Earth’s limb from two different angles, 45 degrees and 135 degrees off the spacecraft’s angle of motion. This allows the instrument to read the same areas of the sky from two angles within a few minutes of the previous reading.

The instrument consists of an interferometer which feeds to a CCD camera. The two telescopes (45 degrees and 135 degrees) each have a one meter long baffle tube to reduce stray light during daytime viewing. The input from the telescopes is positioned side-by-side on the CCD so both views are imaged simultaneously.

Energy inputs instruments

olar Ultraviolet Spectral Irradiance Monitor (SUSIM)

SUSIM measures ultraviolet (UV) emissions from the sun. The observations are made both through vacuum and through occultations of the sun through the atmosphere. This allows a comparison of the amount of UV light that reaches the earth and the amount abosorbed by the upper atmosphere.

Because of the energy of UV, instrument degradation is a major issue. To help with this problem, the instrument contains two identical spectrometers. One will is used almost continuously during the daylight portion of UARS’ orbit. The second is used infrequently to verify the sensitivity of the first.

olar Stellar Irradiance Comparison Experiment (SOLSTICE)

The Solar Stellar Irradiance Comparison Experiment was designed to measure solar radiation. The instrument used a novel approach to calibration: instead of calibrating against an internal reference lamp, the instrument regularly took measurements of bright blue stars, which have theoretically very stable emissions over intervals on the order of the spacecrafts’ operational lifetime. The instrument’s input slit was configurable for solar or stellar modes, to accommodate for the vast difference in target brightness. In addition to stars, SOLSTICE also took occasional measurements of targets of opportunity, including the moon and other objects in the solar system. The instrument’s science team is at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado at Boulder. UARS SOLSTICE’s science mission has been carried on by a SOLSTICE instrument on the Solar Radiation and Climate Experiment (SORCE) spacecraft.

References

* Goddard Space Flight Center (1987). [http://hrdi.engin.umich.edu/Project_Data_Book/Section4_Instruments.pdf|The UARS Instruments] . In "UARS Project Data Book", pp. 4-1–4-63. NASA.
*
*
*
*
*
*
*

External links

* [http://haloe.gats-inc.com View and download HALOE data]
* [http://www.earth.nasa.gov/history/uars/uars.html UARS summary from NASA Earth Science]
* [http://umpgal.gsfc.nasa.gov/ UARS project science office page]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Upper Atmosphere Research Satellite — UARS Caractéristiques Organisation NASA …   Wikipédia en Français

  • Upper Atmosphere Research Satellite — Typ: Erdbeobachtungssatellit Land: USA Behörde: N …   Deutsch Wikipedia

  • Upper Atmosphere Research Satellite — UARS UARS Organización NASA Contratos principales Lockheed Martin Satélite de …   Wikipedia Español

  • Upper Atmosphere Research Satellite — UARS Upper Atmosphere Research Satellite (UARS  Верхнеатмосферный исследовательский спутник)  американский научный спутник массой 6,5 тонны, предназначенный для изучения верхних слоёв атмосферы, запущенный в 1991 и выведенный из… …   Википедия

  • Space and Upper Atmosphere Research Commission — Infobox Government agency agency name = Space and Upper Atmosphere Research Commission nativename = nativename a = nativename r = logo = logo width = 100px logo caption = Logo of SUPARCO seal width = seal caption = formed = September 16, 1961… …   Wikipedia

  • atmosphere — atmosphereless, adj. /at meuhs fear /, n., v., atmosphered, atmosphering. n. 1. the gaseous envelope surrounding the earth; the air. 2. this medium at a given place. 3. Astron. the gaseous envelope surrounding a heavenly body. 4. Chem. any… …   Universalium

  • Atmosphere of Mars — Chemical species mole fraction Carbon dioxide 95.32% Nitrogen 2.7% Argon …   Wikipedia

  • Satellite temperature measurements — have been obtained from the troposphere since 1978. By comparison, the usable balloon (radiosonde) record begins in 1958.Satellites do not measure temperature as such. They measure radiances in various wavelength bands, which must then be… …   Wikipedia

  • Active Cavity Radiometer Irradiance Monitor Satellite — ACRIMSAT ACRIMSAT (Active Cavity Radiometer Irradiance Monitor Satellite) est un des 21 satellites du programme Earth Observing System de la NASA. Il a été lancé le 20 décembre 1999 depuis la base de Vandenberg Air Force Base par une fusée… …   Wikipédia en Français

  • Aura (satellite) — Aura Aura (vue d artiste) Caractéristiques Organisation NASA …   Wikipédia en Français