 Canonical coordinates

In mathematics and classical mechanics, canonical coordinates are particular sets of coordinates on the phase space, or equivalently, on the cotangent manifold of a manifold. Canonical coordinates arise naturally in physics in the study of Hamiltonian mechanics. As Hamiltonian mechanics is generalized by symplectic geometry and canonical transformations are generalized by contact transformations, so the 19th century definition of canonical coordinates in classical mechanics may be generalized to a more abstract 20th century definition in terms of cotangent bundles.
This article defines the canonical coordinates as they appear in classical mechanics. A closely related concept also appears in quantum mechanics; see the Stonevon Neumann theorem and canonical commutation relations for details.
Contents
Definition, in classical mechanics
In classical mechanics, canonical coordinates are coordinates and in phase space that are used in the Hamiltonian formalism. The canonical coordinates satisfy the fundamental Poisson bracket relations:
Canonical coordinates can be obtained from the generalized coordinates of the Lagrangian formalism by a Legendre transformation, or from another set of canonical coordinates by a canonical transformation.
Definition, on cotangent bundles
Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold. They are usually written as a set of (q^{i},p_{j}) or (x^{i},p_{j}) with the x 's or q 's denoting the coordinates on the underlying manifold and the p 's denoting the conjugate momentum, which are 1forms in the cotangent bundle at point q in the manifold.
A common definition of canonical coordinates is any set of coordinates on the cotangent bundle that allow the canonical one form to be written in the form
up to a total differential. A change of coordinates that preserves this form is a canonical transformation; these are a special case of a symplectomorphism, which are essentially a change of coordinates on a symplectic manifold.
In the following exposition, we assume that the manifolds are real manifolds, so that cotangent vectors acting on tangent vectors produce real numbers.
Formal development
Given a manifold Q, a vector field X on Q (or equivalently, a section of the tangent bundle TQ) can be thought of as a function acting on the cotangent bundle, by the duality between the tangent and cotangent spaces. That is, define a function
such that
 P_{X}(q,p) = p(X_{q})
holds for all cotangent vectors p in . Here, X_{q} is a vector in T_{q}Q, the tangent space to the manifold Q at point q. The function P_{X} is called the momentum function corresponding to X.
In local coordinates, the vector field X at point q may be written as
where the are the coordinate frame on TQ. The conjugate momentum then has the expression
where the p_{i} are defined as the momentum functions corresponding to the vectors :
The q^{i} together with the p_{j} together form a coordinate system on the cotangent bundle T ^{*} Q; these coordinates are called the canonical coordinates.
Generalized coordinates
In Lagrangian mechanics, a different set of coordinates are used, called the generalized coordinates. These are commonly denoted as with q^{i} called the generalized position and the generalized velocity. When a Hamiltonian is defined on the cotangent bundle, then the generalized coordinates are related to the canonical coordinates by means of the Hamilton–Jacobi equations.
See also
 Linear discriminant analysis
 symplectic manifold
 symplectic vector field
 symplectomorphism
 Kinetic momentum
References
see H. Goldstein
External links
Categories:
Wikimedia Foundation. 2010.
Look at other dictionaries:
canonical coordinates — kanoninės koordinatės statusas T sritis fizika atitikmenys: angl. canonical coordinates vok. kanonische Koordinaten, f rus. канонические координаты, f pranc. coordonnées canoniques, f … Fizikos terminų žodynas
Canonical transformation — In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (mathbf{q}, mathbf{p}, t) ightarrow (mathbf{Q}, mathbf{P}, t) that preserves the form of Hamilton s equations, although it might not preserve the… … Wikipedia
Canonical commutation relation — In physics, the canonical commutation relation is the relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another), for example: between the position x and momentum … Wikipedia
Canonical ensemble — A canonical ensemble in statistical mechanics is a statistical ensemble representing a probability distribution of microscopic states of the system. The probability distribution is characterised by the proportion pi of members of the ensemble… … Wikipedia
Canonical — is an adjective derived from . Canon comes from the Greek word kanon , rule (perhaps originally from kanna reed , cognate to cane ), and is used in various meanings. Basic, canonic, canonical : reduced to the simplest and most significant form… … Wikipedia
Canonical general relativity — In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity (or canonical gravity). It is a Hamiltonian formulation of Einstein s general theory of relativity. The basic theory was outlined by… … Wikipedia
Canonical bundle — In mathematics, the canonical bundle of a non singular algebraic variety V of dimension n is the line bundle which is the nth exterior power of the cotangent bundle Ω on V. Over the complex numbers, it is the determinant bundle of holomorphic n… … Wikipedia
Canonical analysis — In statistics, canonical analysis (from Gk. κανων bar, measuring rod, ruler) belongs to the family of regression methods for data analysis. Regression analysis quantifies a relationship between a predictor variable and a criterion variable by the … Wikipedia
Canonical quantization — In physics, canonical quantization is one of many procedures for quantizing a classical theory. Historically, this was the earliest method to be used to build quantum mechanics. When applied to a classical field theory it is also called second… … Wikipedia
Canonical correlation — In statistics, canonical correlation analysis, introduced by Harold Hotelling, is a way of making sense of cross covariance matrices.DefinitionGiven two column vectors X = (x 1, dots, x n) and Y = (y 1, dots, y m) of random variables with finite… … Wikipedia