Effective field theory


Effective field theory

In physics, an effective field theory is an approximate theory (usually a quantum field theory) that includes appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies).

The renormalization group

Presently, effective field theories are discussed in the context of the renormalization group (RG) where the process of "integrating out" short distance degrees of freedom is made systematic. Although this method is not sufficiently concrete to allow the actual construction of effective field theories, the gross understanding of their usefulness becomes clear through an RG analysis. This method also lends credence to the main technique of constructing effective field theories, through the analysis of symmetries. If there is a single mass scale M in the "microscopic" theory, then the effective field theory can be seen as an expansion in 1/M. This technique is useful for scattering or other processes where the maximum momentum scale k satisfies the condition k/M<<1. Since effective field theories are not valid at small length scales, they need not be renormalizable.

Examples of effective field theories

Fermi theory of beta decay

The most well-known example of an effective field theory is the Fermi theory of beta decay. This theory was developed during the early study of weak decays of nuclei when only the hadrons and leptons undergoing weak decay were known. The typical reactions studied were:::n o p+e^-+overline u_e::mu^- o e^-+overline u_e+ u_mu.This theory posited a pointlike interaction between the four fermions involved in these reactions. The theory had great phenomenological success and was eventually understood to arise from the gauge theory of electroweak interactions, which forms a part of the standard model of particle physics. In this more fundamental theory, the interactions are mediated by a flavour-changing gauge boson, the W±. The immense success of the Fermi theory was because the W particle has mass of about 80 GeV, whereas the early experiments were all done at an energy scale of less than 10 MeV. Such a separation of scales, by over 3 orders of magnitude, has not been met in any other situation as yet.

BCS theory of superconductivity

Another famous example is the BCS theory of superconductivity. Here the underlying theory is of electrons in a metal interacting with lattice vibrations called phonons. The phonons cause attractive interactions between some electrons, causing them to form Cooper pairs. The length scale of these pairs is much larger than the wavelength of phonons, making it possible to neglect the dynamics of phonons and construct a theory in which two electrons effectively interact at a point. This theory has had remarkable success in describing and predicting the results of experiments.

Other examples

Presently, effective field theories are written for many situations.
*One major branch of nuclear physics is quantum hadrodynamics, where the interactions of hadrons are treated as a field theory, which one hopes to derive from quantum chromodynamics, the true underlying theory, in the future. Due to the smaller separation of length scales here, this effective theory has some classificatory power, but not the spectacular success of the Fermi theory.
*In particle physics the effective field theory of QCD called chiral perturbation theory has had better success. This theory deals with the interactions of hadrons with pions or kaons, which are the Goldstone bosons of spontaneous chiral symmetry breaking. The expansion parameter is the pion energy/momentum.
*For hadrons containing one heavy quark (such as the bottom or charm), an effective field theory which expands in powers of the quark mass, called the heavy-quark effective theory (HQET), has been found useful.
*For hadrons containing two heavy quarks, an effective field theory which expands in powers of the relative velocity of the heavy quarks, called non-relativistic QCD (NRQCD), has been found useful, especially when used in conjunctions with lattice QCD.
*For hadron reactions with light energetic (collinear) particles, the interactions with low-energetic (soft) degrees of freedom are described by the soft-collinear effective theory (SCET).
*General relativity is expected to be the low energy effective theory of a full theory of quantum gravity, such as string theory. The expansion scale is the Planck mass.
*All of condensed matter physics consists of writing effective field theories for the particular property of matter being studied.
*Effective field theories have also been used to simplify problems in General Relativity (NRGR). In particular in calculating post-Newtonian corrections to the gravity wave signature of inspiralling finite-sized objects. [http://arxiv.org/pdf/hep-th/0409156]

ee also

*Renormalization group
*Quantum field theory

References and external links

* [http://arxiv.org/abs/hep-ph/9806303 Effective Field Theory, A. Pich] , Lectures at the 1997 Les Houches Summer School "Probing the Standard Model of Particle Interactions."
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VH6-42WP59W-7&_user=10&_handle=V-WA-A-W-D-MsSAYWA-UUW-U-AABVCUWVAD-AABWUYBWAD-VDWCVUEAW-D-U&_fmt=summary&_coverDate=06%2F30%2F2001&_rdoc=7&_orig=browse&_srch=%23toc%236058%232001%23999679997%23246610!&_cdi=6058&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f3f507eb552a4deccd7a93977d1dde3d Effective field theories, reduction and scientific explanation, by S. Hartmann] , "Studies in History and Philosophy of Modern Physics" 32B, 267-304 (2001).
* [http://arxiv.org/abs/hep-ph/9311274 On the foundations of chiral perturbation theory, H. Leutwyler] (Annals of Physics, v 235, 1994, p 165-203)
* [http://arxiv.org/abs/hep-ph/9703290 Aspects of heavy quark theory, by I. Bigi, M. Shifman and N. Uraltsev] (Annual Reviews of Nuclear and Particle Science, v 47, 1997, p 591-661)
* [http://www.fuw.edu.pl/~dobaczew/maub-42w/node18.html Effective field theory] (Interactions, Symmetry Breaking and Effective Fields - from Quarks to Nuclei. an Internet Lecture by Jacek Dobaczewski)


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Scalar field theory — In theoretical physics, scalar field theory can refer to a classical or quantum theory of scalar fields. A field which is invariant under any Lorentz transformation is called a scalar , in contrast to a vector or tensor field. The quanta of the… …   Wikipedia

  • Quantum field theory — In quantum field theory (QFT) the forces between particles are mediated by other particles. For instance, the electromagnetic force between two electrons is caused by an exchange of photons. But quantum field theory applies to all fundamental… …   Wikipedia

  • Polymer field theory — A polymer field theory within the framework of statistical mechanics is a statistical field theory, describing the statistical behavior of a neutral or charged polymer system within the field theoretic approach.It can be derived by transforming… …   Wikipedia

  • Mean field theory — (MFT, also known as self consistent field theory) is a method to analyse physical systems with multiple bodies. A many body system with interactions is generally very difficult to solve exactly, except for extremely simple cases (random field… …   Wikipedia

  • Statistical field theory — A statistical field theory is any model in statistical mechanics where the degrees of freedom comprise a field or fields. In other words, the microstates of the system are expressed through field configurations. It is closely related to quantum… …   Wikipedia

  • Correlation function (quantum field theory) — For other uses, see Correlation function (disambiguation). Quantum field theory …   Wikipedia

  • Form factor (Quantum Field Theory) — In effective field theory, a form factor is a function which gives the properties of a certain particle interaction without including all of the underlying physics. It is measured experimentally when a theoretical calculation is unavailable or… …   Wikipedia

  • Dynamical mean field theory — (DMFT) is a method to determine the electronic structure of strongly correlated materials. In such materials, the approximation of independent electrons, which is used in Density Functional Theory and usual band structure calculations, breaks… …   Wikipedia

  • Topological quantum field theory — A topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants.Although TQFTs were invented by physicists (notably Edward Witten), they are primarily of mathematical… …   Wikipedia

  • Effective medium approximations — or effective medium theory (sometimes abbreviated as EMA or EMT) are physical models that describe the macroscopic properties of a medium based on the properties and the relative fractions of its components. They can be discrete models such as… …   Wikipedia