# Nilpotent operator

﻿
Nilpotent operator

In operator theory, a bounded operator T on a Hilbert space is said to be nilpotent if Tn = 0 for some n. It is said to be quasinilpotent or topological nilpotent if its spectrum σ(T) = {0}.

## Examples

In the finite dimensional case, i.e. when T is a square matrix with complex entries, σ(T) = {0} if and only if T is similar to a matrix whose only nonzero entries are on the superdiagonal, by the Jordan canonical form. In turn this is equivalent to Tn = 0 for some n. Therefore, for matrices, quasinilpotency coincides with nilpotency.

This is not true when H is infinite dimensional. Consider the Volterra operator, defined as follows: consider the unit square X = [0,1] × [0,1] ⊂ R2, with the Lebesgue measure m. On X, define the (kernel) function K by $K(x,y) = \left\{ \begin{matrix} 1, & \mbox{if} \; x \geq y\\ 0, & \mbox{otherwise}. \end{matrix} \right.$

The Volterra operator is the corresponding integral operator T on the Hilbert space L2(X, m) given by $T f(x) = \int_0 ^1 K(x,y) f(y) dy.$

The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that Tn f ≠ 0 (in the sense of L2) for all n. However, T is quasinilpotent. First notice that K is in L2(X, m), therefore T is compact. By the spectral properties of compact operators, any nonzero λ in σ(T) is an eigenvalue. But it can be shown that T has no nonzero eigenvalues, therefore T is quasinilpotent.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Nilpotent matrix — In linear algebra, a nilpotent matrix is a square matrix N such that for some positive integer k. The smallest such k is sometimes called the degree of N. More generally, a nilpotent transformation is a linear transformation L of a vector space… …   Wikipedia

• Nilpotent — This article is about a type of element in a ring. For the type of group, see Nilpotent group. In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n such that xn = 0. The term was… …   Wikipedia

• Volterra operator — In mathematics, in the area of functional analysis and operator theory, the Volterra operator represents the operation of indefinite integration, viewed as a bounded linear operator on the space L 2(0,1) of complex valued square integrable… …   Wikipedia

• Engel theorem — In representation theory, Engel s theorem is one of the basic theorems in the theory of Lie algebras; it asserts that for a Lie algebra two concepts of nilpotency are identical. A useful form of the theorem says that if a Lie algebra L of… …   Wikipedia

• List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

• Bundle gerbe — In mathematics, a bundle gerbe is a geometrical model of certain 1 gerbes with connection, or equivalently of a 2 class in Deligne cohomology. Topology U (1) principal bundles over a space M (see circle bundle) are geometrical realizations of 1… …   Wikipedia

• Jordan–Chevalley decomposition — In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley (also known as Dunford decomposition, named after Nelson Dunford, as well as SN decomposition), expresses a linear operator as the sum of its… …   Wikipedia

• Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

• Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

• Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia