Diffusion equation


Diffusion equation

The diffusion equation is a partial differential equation which describes density fluctuations in a material undergoing diffusion. It is also used to describe processes exhibiting diffusive-like behaviour, for instance the 'diffusion' of alleles in a population in population genetics.

The equation is usually written as:

\frac{\partial\phi(\mathbf{r},t)}{\partial t} = \nabla \cdot \big[ D(\phi,\mathbf{r}) \, \nabla\phi(\mathbf{r},t) \big],

where \, \phi(\mathbf{r},t) is the density of the diffusing material at location \mathbf{r} and time t and \, D(\phi,\mathbf{r}) is the collective diffusion coefficient for density \,\phi at location \mathbf{r}; the nabla symbol \, \nabla represents the vector differential operator del acting on the space coordinates. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear. If \, D is constant, then the equation reduces to the following linear equation:

\frac{\partial\phi(\mathbf{r},t)}{\partial t} = D\nabla^2\phi(\mathbf{r},t),

also called the heat equation. More generally, when D is a symmetric positive definite matrix, the equation describes anisotropic diffusion, which is written (for three dimensional diffusion) as:

\frac{\partial\phi(\mathbf{r},t)}{\partial t} = \sum_{i=1}^3\sum_{j=1}^3 \frac{\partial}{\partial x_i}\left[D_{ij}(\phi,\mathbf{r})\frac{\partial \phi(\mathbf{r},t)}{\partial x_j}\right]

Contents

Derivation

The diffusion equation can be derived in a straightforward way from the continuity equation, which states that a change in density in any part of the system is due to inflow and outflow of material into and out of that part of the system. Effectively, no material is created or destroyed:

\frac{\partial\phi}{\partial t}+\nabla\cdot\mathbf{j}=0,

where \mathbf{j} is the flux of the diffusing material. The diffusion equation can be obtained easily from this when combined with the phenomenological Fick's first law, which assumes that the flux of the diffusing material in any part of the system is proportional to the local density gradient:

\mathbf{j}=-D(\phi)\,\nabla\phi(\mathbf{r},t).

If drift must be taken into account, the Smoluchowski equation provides an appropriate generalization.

Historical origin

The particle diffusion equation was originally derived by Adolf Fick in 1855.[1]

Discretization

The diffusion equation is continuous in both time and space. One may discretize space, time, or both space and time, which arise in application. Discretizing time alone just corresponds to taking time slices of the continuous system, and no new phenomena arise. In discretizing space alone, the Green's function becomes the discrete Gaussian kernel, rather than the continuous Gaussian kernel. In discretizing both time and space, one obtains the random walk.

Discretization (Image)

The product rule is used to rewrite the anisotropic tensor diffusion equation, in standard discretization schemes. Because direct discretization of the diffusion equation with only first order spatial central differences leads to checkerboard artifacts. The rewritten diffusion equation used in image filtering :

 \frac{\partial\phi(\mathbf{r},t)}{\partial t} = \mathrm{div}\Big[D(\phi,\mathbf{r})\Big] \nabla  \phi(\mathbf{r},t) + \mathrm{trace} \Big[ D(\phi,\mathbf{r})\big(\nabla\nabla^T \phi(\mathbf{r},t)\big)\Big]

In which in image filtering \, D(\phi,\mathbf{r}) are symmetric matrices constructed from the eigenvectors of the image structure tensors . The spatial derivatives can then be approximated by two first order and a second order central finite differences. The resulting diffusion algorithm can be written as an image convolution with a varying kernel (stencil) of size 3x3 in 2D and 3x3x3 in 3D.

See also

References

  1. ^ A. Fick, Ueber Diffusion, Pogg. Ann. Phys. Chem. 170 (4. Reihe 94), 59-86 (1855).

2. Carslaw, H. S. and Jager, J. C. (1959). Conduction of Heat in Solids. Oxford: Clarendon Press

3. Crank, J. (1956). The Mathematics of Diffusion. Oxford: Clarendon Press

4. Thambynayagam, R. K. M (2011). The Diffusion Handbook: Applied Solutions for Engineers: McGraw-Hill

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • diffusion equation — difuzijos lygtis statusas T sritis fizika atitikmenys: angl. diffusion equation vok. Diffusionsgleichung, f rus. диффузионное уравнение, n; уравнение диффузии, n pranc. équation de diffusion, f …   Fizikos terminų žodynas

  • Convection–diffusion equation — The convection–diffusion equation is a parabolic partial differential equation combining the diffusion equation and the advection equation, which describes physical phenomena where particles or energy (or other physical quantities) are… …   Wikipedia

  • Convection diffusion equation — The Convection Diffusion equation is a parabolic partial differential equation. It is very important for the description of physical phenomena where particles or energy (or other physical quantities) are transferedinside a physical system due to… …   Wikipedia

  • Photon diffusion equation — is a second order partial differential equation describing the time behavior of photon fluence rate distribution in a low absorption high scattering medium.Its mathematical form is as follows. abla(D(r)cdot abla)Phi(vec{r},t) vmu… …   Wikipedia

  • Equation de Fokker-Planck — Équation de Fokker Planck L équation de Fokker Planck est une équation aux dérivées partielles linéaire que doit satisfaire la densité de probabilité de transition d un processus de Markov. A l origine, une forme simplifiée de cette équation a… …   Wikipédia en Français

  • Équation de fokker-planck — L équation de Fokker Planck est une équation aux dérivées partielles linéaire que doit satisfaire la densité de probabilité de transition d un processus de Markov. A l origine, une forme simplifiée de cette équation a permis d étudier le… …   Wikipédia en Français

  • Diffusion (disambiguation) — Diffusion is a time dependent random process causing a spread in space. Diffusion may also refer to: In physical sciences Molecular diffusion, spontaneous dispersion of mass (distinct from migration, caused by an external force) Conduction of… …   Wikipedia

  • Équation de Fokker-Planck — L équation de Fokker Planck est une équation aux dérivées partielles linéaire que doit satisfaire la densité de probabilité de transition d un processus de Markov. A l origine, une forme simplifiée de cette équation a permis d étudier le… …   Wikipédia en Français

  • Diffusion — This article is about the generic concept of the time dependent random process. For other uses, see Diffusion (disambiguation). Diffusion describes the spread of particles through random motion from regions of higher concentration to regions of… …   Wikipedia

  • Diffusion process — For the marketing term, see Diffusion of innovations. In probability theory, a branch of mathematics, a diffusion process is a solution to a stochastic differential equation. It is a continuous time Markov process with continuous sample paths. A… …   Wikipedia